모순을 찾아라 – 항등식의 기술 (울산대, 2020)

이 글에서는 항등식의 기술이 문제에서 어떻게 사용되는지를 살펴보고자 합니다. 이 문제는 항등식의 기술이 문제가 요구하는 모순을 어떻게 이끌어 낼 수 있는지를 잘 보여주는 문제입니다.

문제

서로의 차가 \(2\)이상인 네 정수 $$p>q>r>s$$가 주어질 때 다음 조건 (가), (나)를 모두 만족하는 계수가 정수인 3차 다항식 \(f(x)\)가 존재할 수 없음을 보이시오. $$\begin{align}
&A=f(p)-f(q), B=f(q)-f(r)\\
&C=f(r)-f(s), D=f(s)-f(p)\\
\end{align}$$라 하면, $$\begin{align}
&\text{(가) } ABCD<0\\
&\text{(나) } |A|,|B|,|C|,|D|\text{ 는 모두 소수}
\end{align}$$

(more…)

항등식의 기술

$$f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$라고 할 때,

서로 다른 \(n+1\)개의 실수 \(p_1,p_2,…,p_{n+1}\)에 대해,  $$\begin{align}
&f(p_1)=f(p_2)=\cdots=f(p_{n+1})=0\\
&\Leftrightarrow f(x)=0 \text{이 }x\text{에 대한 항등식}\end{align}$$

  항등식에 관한 문제를 풀다보면 이 사실을 핵심으로 하는 풀이를 가진 문제를 종종 볼 수 있습니다.  이 글에서는 이 명제를 증명하고, 실제 문제에서 어떻게 이 명제를 사용할 수 있는지 살펴보겠습니다.

(more…)

소소하지만 확실한 테크닉 – 지수함수와 고속적분

어떤 함수와 도함수의 합이나 차가 지수함수와 곱해져 있는 식을 적분할 때, 다음 식을 이용하면 무척 편하게 부정적분을 구할 수 있는 경우가 있습니다.

$$\begin{align}
&\int (f(x)+f'(x))e^x dx=f(x)e^x+C\\
&\int (f(x)-f'(x))e^{-x} dx =-f(x)e^{-x}+C\\
\end{align}$$

이 글에서는 이 식의 간단한 증명과 예를 살펴봅니다.

(more…)

미적분 부등식의 GOAT (feat. 조화급수, 2017 한양대 자연)

이 글에서는 미적분에서 가장 중요한 부등식 중 하나를 소개합니다. 이 부등식은 미적분의 여러 부등식 문제에서 약방의 감초처럼 사용되는 아주 중요한 부등식으로, 이 부등식의 특징은 입시문제에서 자주 사용하는 중요한 소재 중 하나입니다.

$$\ln x \leq x-1\tag{1}\label{eq1}$$

이 글에서는 이 부등식이 성립하는 이유를 알아보고 이 부등식의 특징과 활용방법 그리고 이 부등식을 이용한 입시 문제를 살펴보겠습니다.

(more…)

전설의 수학 문제를 찾아서 – 원탁위의 카드 (2) (2016, 서울대)

전설의 수학 문제를 찾아서 8번째 문제 2016학년도 서울대 구술 고사 문제인 원탁위의 카드 두번째 글입니다. 일대일 대응의 개념을 사용하여 만들어진 멋진 문제입니다. 이 문제에서 우리가 배울 수 있는 일대일 대응의 성질은 무엇일까요?

(more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

조립제법의 원리 – 나눗셈의 귀납적 관계

조립제법이란 다항식을 일차식으로 나눈 몫과 나머지를 곱셈과 덧셈만을 반복하여  빠르게 구하는 방법입니다. 다항식을 일차식으로 나누면 특별한 귀납적 관계를 발견할 수 있습니다. 이 귀납적 관계를 핵심원리로 삼아 만들어진 방법이 바로 조립제법입니다. 이 글에서는 일차식의 나눗셈이 가지고 있는 귀납적 관계를 살펴보고 조립제법이 어떻게 이 원리를 사용하고 있는지 알아보겠습니다.

(more…)

주제별 글 목록

주제별로 글을 정리한 목록입니다. 아직 완전히 정리된 것은 아닙니다, 앞으로 글을 올리면서 목록이 길어지면 교과별로 나눌 예정입니다. 글 제목을 클릭하면 해당 글로 이동합니다.

(more…)

그래프의 확대 및 축소 변환

\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$

\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$

그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.

(more…)

소소하지만 확실한 테크닉 – 삼차함수의 극댓값과 극솟값의 합

삼차함수 $$f(x)=ax^3+bx^2+cx+d$$가 \(x=\alpha\), \(x=\beta\) 에서 각각 극댓값과 극솟값 \(f(\alpha)\)  \(f(\beta)\)를 갖고 변곡점의 좌표가 \((m, f(m))\) 일 때, 두 극값의 합 \(f(\alpha)+f(\beta)\)는 다음과 같습니다.

$$f(\alpha)+f(\beta)=2f(m)=2f\left(\frac{\alpha+\beta}{2}\right)$$

이 식을 사용하면 극값의 합과 관계된 문제에서 복잡한 계산을 많이 줄일 수 있습니다. 이 글에서는 두 극값의 합이 변곡점과 어떤 관계를 갖고 있는지 설명합니다.

(more…)

사차함수 그래프의 대칭성과 \(1:\sqrt{2}\) 법칙

이중접선을 갖는 사차함수의 그래프는 다음과 같은 비율 관계를 갖고 있습니다.

사차함수의 그래프와 이중접선이 두 점 \(\mathrm{A}\), \(\mathrm{B}\)에서 접하고, 선분\(\mathrm{AB}\)의 중점을 \(\mathrm{F}\), 이중접선과 평행한 직선이 사차함수의 그래프와 점\(\mathrm{E}\)에서 접하고 \(\mathrm{C}\), \(\mathrm{D}\)에서 만날 때,

[관계①]. 점\(\mathrm{E}\)의 \(x\)좌표=점\(\mathrm{F}\)의 \(x\)좌표
[관계②]. \(\mathrm{AF}:\mathrm{FB}:\mathrm{CE}:\mathrm{ED}=1:1:\sqrt{2}:\sqrt{2}\)

(more…)