전설의 수학 문제를 찾아서 – 원탁위의 카드 (2) (2016, 서울대)

전설의 수학 문제를 찾아서 8번째 문제 2016학년도 서울대 구술 고사 문제인 원탁위의 카드 두번째 글입니다. 일대일 대응의 개념을 사용하여 만들어진 멋진 문제입니다. 이 문제에서 우리가 배울 수 있는 일대일 대응의 성질은 무엇일까요?

(more…)

전설의 수학 문제를 찾아서 – tan1°의 정체 (2006, 교토)

전설의 수학 문제를 찾아서, 7번째 문제는 \(\tan1^\circ\)의 정체입니다. 이 문제는 여러 개의 기본적인 수학 개념을 조합하여 어떻게 좋은 문제를 만들 수 있는지를 아주 잘 보여주는 문제입니다. 문제의 길이는 아주 짧지만 그 여운은 아주 강렬했던 문제입니다. 실제로 이 문제는 수험생들 중 일부만 풀 수 있었던 것으로 알려져 있습니다. 그 이유는 과연 무엇이었을까요? 이 문제를 풀기 위해 필요한 기본 개념들은 무엇일까요?

\(\tan1^\circ\)는 유리수인가? 무리수인가?

(more…)

전설의 수학 문제를 찾아서 – 원뿔과 경사로 문제 (1997학년도 수능 자연계 24번)

전설의 수학 문제를 찾아서, 6번째 문제는 원뿔과 경사로 문제입니다. 이 문제는 공간도형을 머릿속에서 생각하려했던 사람들의 머리를 쥐어짜냈던, 악명이 높은 문제입니다.

다음 그림과 같은 직원뿔 모양의 산이 있다. \(\mathrm{A}\)지점을 출발하여 산을 한바퀴 돌아 \(\mathrm{B}\)지점으로 가는 관광 열차의 궤도를 최단거리로 놓으면, 이 궤도는 처음에는 오르막 길이지만 나중에는 내리막길이 된다. 이 내리막길의 길이는?

(more…)

전설의 수학 문제를 찾아서 – 삼차함수의 최대/최소 (1991, 동경대)

전설의 수학 문제를 찾아서, 5번째 문제는 3차함수의 최대/최소 문제입니다. 1991년 동경대 입시 문제로, 많은 사람들을 놀라게 했던 문제입니다.

구간 \(-\dfrac{7}{4}\leq x \leq 3\) 에서 함수 \(f(x)=x^3-2x^2-3x+4\) 의 최댓값과 최솟값을 구하시오

이 문제는 평범한 문제입니다. 하지만 이 문제는 어려운 문제입니다. 이 문제에 담겨있는 출제자의 의도는 무엇일까요? 그리고 이 문제에서 배울 수 있는 것은 무엇일까요?  (more…)

전설의 수학 문제를 찾아서 – 공통근의 함정, 그리고 종결식 (1971, 동경대)

전설의 수학 문제를 찾아서, 4번째 문제는 공통근 문제입니다. 1971년 동경대 입시 문제로 출제된 이 문제는 공통근에 대한 우리의 고정관념을 멋지게 뒤집는 문제입니다.

실수 \(a,\ b\) 에 대하여, 두 이차방정식 $$x^2+ax+b=0,\ ax^2+bx+1=0$$이 있다.
(1) 두 이차방정식이 실수근 \(\lambda\)를 공통으로 가질 때 \(\lambda\)의 값과 \(a+b\)의 값을 구하시오.
(2) 두 이차방정식이 허근을 공통근으로 가질 때 \(a,\ b\)의 값을 구하시오.

이 문제에는 어떠한 함정이 숨겨져 있을까요? 이 함정을 해결할 수 있는 방법은 무엇일까요? 그리고 이 문제의 배경에는 어떠한 수학적 원리가 숨어있을까요? (more…)

전설의 수학 문제를 찾아서 – 3인의 죄수

전설의 수학 문제를 찾아서, 3번째 문제는 3인의 죄수 문제입니다. 이 문제 역시 전설의 수학 문제 #1과 #2와 같은 조건부 확률 문제입니다. 서벨로니 (Serbelloni) 문제라고도 알려진 이 문제는 1966년 여름 서벨로니 별장에서 열린 이론 생물학회에서 화제가 된 문제입니다.

A, B, C 3명의 죄수가 있습니다. 3명의 죄수 중에서 곧 2명이 처형이 될 예정이고, 3인의 죄수 모두가 이 사실을 알고 있습니다. 하지만 처형이 될 죄수 2명의 이름은 간수만 알고 있습니다. 어느 날 죄수A는 간수에게 죄수B와 C 2명 중에서 적어도 1명이 처형되는 것은 확실하니 B나 C중 누가 처형이 되는지 한 사람의 이름을 말해달라고 부탁했습니다. 이 때 간수는 B가 처형이 될 것이라고 대답해 주었습니다.

이 말을 들은 죄수 A는 자신이 처형될 확률이 낮아졌다고 무척 기뻐했습니다. 대답을 듣기 전 자신이 처형될 확률은 \(\frac{2}{3}\approx 66.7\%\) 였지만 대답을 듣고 난 후 뒤에는 B와 같이 처형될 죄수는 자신이 아니면 C이므로 앞으로 자신이 처형될 확률이 \(\frac{1}{2}=50\%\) 가 되어 자신이 처형될 확률이 간수의 대답을 듣기 전보다 낮아졌다고 생각했기 때문입니다. 간수가 거짓말을 하지 않는다면 과연 죄수의 판단은 옳은 것일까요?

(more…)