정\(2n\)각형(\(n\ge 3\))의 세 꼭지점을 연결해 만든 삼각형중에서
$$\text{예각삼각형의 개수:둔각삼각형의 개수}=1:3$$
이 글에서는 정\(2n\)각형에서 \(1:3\) 법칙이 성립하는 이유를 알아보고 활용방법을 생각해보겠습니다.정\(2n\)각형(\(n\ge 3\))의 세 꼭지점을 연결해 만든 삼각형중에서
$$\text{예각삼각형의 개수:둔각삼각형의 개수}=1:3$$
이 글에서는 정\(2n\)각형에서 \(1:3\) 법칙이 성립하는 이유를 알아보고 활용방법을 생각해보겠습니다.이차함수 \(y=ax^2+bx+c\)위에 있는 세 점 \(\mathrm{P}\), \(\mathrm{Q}\), \(\mathrm{R}\)의 \(x\)좌표가 각각 \(p\),\(q\),\(r\)이라 할 때, (단, \(p<q<r\)) 세 점을 꼭짓점으로 하는 삼각형의 넓이는
$$\frac{|a|}{2}(p-q)(q-r)(r-p)$$
삼각형의 세 변의 길이가 각각 \(a\), \(b\), \(c\)이고, 한 개 이상의 변의 길이가 무리수인 삼각형의 넓이는 헤론의 공식의 또 다른 형태
$$\frac{1}{4}\sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)}$$
을 사용합니다. 이 글에서는 이 식의 사용법과 증명을 알아 보겠습니다.$$a\overrightarrow{PA}+b\overrightarrow{PB}+c\overrightarrow{PC}=\overrightarrow{0}$$ 가 성립할 때 점 \(P\)를 \(\triangle{ABC}\)의 가중 무게 중심이라고 합니다. 또한 $$\triangle PBC:\triangle PCA:\triangle PAB=a:b:c$$가 됩니다. 이 글에서는 선분과 삼각형의 가중 무게 중심의 위치를 찾는 법과 가중 무게 중심의 위치 벡터, 삼각형의 넓이비에 대해서 알아보겠습니다.