\(t=\tan x\)로 치환하면,
$$\int\frac{1}{1+x^2}dx \to \int dt$$
가 되어 적분하려는 함수가 상수 1이 되어 적분이 아주 간단해 집니다. 이렇게 삼각치환을 하면 적분하려는 함수가 간단해 지는 이유는 무엇일까요? 왜 꼭 굳이 \(t=\tan x\) 로 치환하는 이유는 무엇일까요?이 글에서는 삼각치환의 비밀과 그 뒤에 있는 수학적 배경에 대해 이야기 합니다. (more…)
\(t=\tan x\)로 치환하면,
$$\int\frac{1}{1+x^2}dx \to \int dt$$
가 되어 적분하려는 함수가 상수 1이 되어 적분이 아주 간단해 집니다. 이렇게 삼각치환을 하면 적분하려는 함수가 간단해 지는 이유는 무엇일까요? 왜 꼭 굳이 \(t=\tan x\) 로 치환하는 이유는 무엇일까요?이 글에서는 삼각치환의 비밀과 그 뒤에 있는 수학적 배경에 대해 이야기 합니다. (more…)
\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,
$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$
\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,
$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$