이 글에서는 항등식의 기술이 문제에서 어떻게 사용되는지를 살펴보고자 합니다. 이 문제는 항등식의 기술이 문제가 요구하는 모순을 어떻게 이끌어 낼 수 있는지를 잘 보여주는 문제입니다.
문제
서로의 차가 \(2\)이상인 네 정수 $$p>q>r>s$$가 주어질 때 다음 조건 (가), (나)를 모두 만족하는 계수가 정수인 3차 다항식 \(f(x)\)가 존재할 수 없음을 보이시오. $$\begin{align}
&A=f(p)-f(q), B=f(q)-f(r)\\
&C=f(r)-f(s), D=f(s)-f(p)\\
\end{align}$$라 하면, $$\begin{align}
&\text{(가) } ABCD<0\\
&\text{(나) } |A|,|B|,|C|,|D|\text{ 는 모두 소수}
\end{align}$$