사차함수의 이중접선과 변곡점의 관계

이중접선을 갖는 사차함수의 그래프는 어떤 특징을 갖고 있을까요? 놀랍게도 변곡점을 갖는 모든 사차함수는 이중접선을 갖고 있습니다. 반대로 이중접선을 갖는 사차함수는 변곡점을 갖고 있습니다. 즉, 사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\) \((a\ne 0)\)의 그래프가 이중접선을 가질 조건은 함수 \(f(x)\)의 그래프가 변곡점을 가질 조건과 같습니다. 즉, 

$$\begin{align}&\text{변곡점을 갖는 사차함수}\\
&\Leftrightarrow\text{이중접선을 갖는 사차함수}\end{align}$$

이고, \(f(x)\)의 그래프가 이중접선을 갖기 위한 조건은

$$3b^2-8ac>0$$

입니다. 그리고 이 때, 이중접선의 방정식은

$$y=\left(\frac{b(b^2-4ac)}{8a^2}+d\right)x-\frac{(b^2-4ac)^2}{64a^3}+e$$

입니다. 이 글에서는 이 조건을 증명하고, 이중접선의 방정식을 유도합니다.

(more…)

사차함수의 그래프가 변곡점을 가질 조건

사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\)의 그래프가 두 개의 변곡점을 가질 조건은

$$3b^2-8ac>0$$

이고, 두 변곡점의 \(x\)좌표는

$$\frac{-3b\pm\sqrt{3(3b^2-8bc)}}{12a}$$

입니다. 이 글에서는 이 조건의 원리를 알아보고 변곡점을 갖고 있는 사차함수 그래프의 모양을 살펴봅니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

특정한 조건을 만족하는 삼차방정식의 근의 개수 Ⅰ

문제를 풀다보면 특정한 조건을 만족하는 상황에서 삼차방정식 \(f(x)=0\)의 근의 개수를 구해야 할 때가 종종 있습니다. 삼차함수 \(f(x)\)와 도함수 \(f'(x)\), 두 실수 \(\alpha\)와 \(\beta\)에 대해, \(f'(\alpha)=f'(\beta)=0\)이면, 삼차방정식 \(f(x)=0\)의 근의 개수는 다음과 같은 방법으로 구할 수 있습니다.

$$\begin{array}{c|c} \text{조건} & \text{근의 개수}\\\hline
f(\alpha)f(\beta)>0 & \text{\(1\)개}\\\hline
f(\alpha)f(\beta)=0 & \begin{array} {c|c} \alpha=\beta & \text{\(1\)개}\\\hline \alpha \ne \beta & \text{\(2\) 개}\end{array} \\\hline
f(\alpha)f(\beta)<0 & \text{\(3\) 개}
\end{array}$$

이 글에서는 조건 \(f'(\alpha)=f'(\beta)=0\)을 만족할 때, 삼차방정식 \(f(x)=0\)의 근의 개수를 구하는 방법을 살펴보고, 이렇게 경우를 나눌 때의 장점은 무엇인지 생각해 보겠습니다. (more…)

첫째항부터 성립하는 수열과 공합 S0의 관계

수열 \(\{a_n\}\)의 첫째항부터 제 \(0\)항 까지의 합을 공합(空合, empty sum)이라고 부릅니다. 첫째항부터 제 \(n\)항까지의 합을 \(S_n\)이라고 할 때, $$a_n=S_n-S_{n-1}$$이 \(n=1\)부터 성립할 필요충분조건은

$$S_0=0$$

첫째항부터 제 \(0\)항까지의 합을 어떻게 정의할 수 있을까요? 그리고 그 의미는 무엇일까요? 이 글에서는 조건 \(S_0=0\)의 필요충분성을 증명하고, 공합 \(S_0\)의 의미를 알아봅니다.

(more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

가중 무게 중심 위치와 넓이비 (비법공식)

$$a\overrightarrow{PA}+b\overrightarrow{PB}+c\overrightarrow{PC}=\overrightarrow{0}$$ 가 성립할 때 점 \(P\)를 \(\triangle{ABC}\)의 가중 무게 중심이라고 합니다.  또한  $$\triangle PBC:\triangle PCA:\triangle PAB=a:b:c$$가 됩니다. 이 글에서는 선분과 삼각형의 가중 무게 중심의 위치를 찾는 법과 가중 무게 중심의 위치 벡터, 삼각형의 넓이비에 대해서 알아보겠습니다.

(more…)

소소하지만 확실한 테크닉 – 삼각함수 근사를 이용한 극한의 계산

  \(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.

\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$

이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다.

(more…)

사차 함수와 이중접선으로 둘러싸인 부분의 넓이의 고속적분 – 1/30 공식

4차 함수 \(y=ax^4+bx^3+cx^2+dx+e\) 의 그래프가 직선 \(y=mx+n\)의 그래프와 x좌표가 각각 α, β (단, β > α) 인 두 점에서 이중으로 접할 때 4차 함수의 그래프와 이중 접선으로 둘러싸인 부분의 넓이는 $$\begin{align}&\int_{\alpha}^{\beta}|ax^4+bx^3+cx^2+dx+e-(mx+n)|dx\\
&=\int_{\alpha}^{\beta}|a(x-\alpha)^2(x-\beta)^2|dx\\
&=\frac{|a|}{30}(\beta-\alpha)^5\end{align}$$

이 글에서는 이 식의 증명을 소개합니다. (more…)

주제별 글 목록

주제별로 글을 정리한 목록입니다. 아직 완전히 정리된 것은 아닙니다, 앞으로 글을 올리면서 목록이 길어지면 교과별로 나눌 예정입니다. 글 제목을 클릭하면 해당 글로 이동합니다.

(more…)

소소하지만 확실한 테크닉 – 90도 회전이동

점 \(\mathrm{A}(a,b)\)를 원점 \(\mathrm{O}\)를 중심으로 반시계방향으로 \(90^\circ\) (또는 \(+90^\circ\)) 회전 이동한 점 \(\mathrm{A^\prime}\)과 시계 방향으로 \(90^\circ\) (또는 \(-90^\circ\)) 회전 이동한 점  \(\mathrm{A^{\prime\prime}}\)의 좌표는 각각 다음과 같습니다. $$\begin{align}&\mathrm{A}(a,b)\xrightarrow{+90^\circ회전}\mathrm{A’}(-b,a)\\
&\mathrm{A}(a,b)\xrightarrow{-90^\circ회전}\mathrm{A^{\prime\prime}}(b,-a)\end{align}$$

이 글에서는 원점을 중심으로 하는 90° 회전 이동의 결과를 증명하고 활용방법에 대해서 이야기 합니다. (more…)