사차함수의 이중접선과 변곡점의 관계

이중접선을 갖는 사차함수의 그래프는 어떤 특징을 갖고 있을까요? 놀랍게도 변곡점을 갖는 모든 사차함수는 이중접선을 갖고 있습니다. 반대로 이중접선을 갖는 사차함수는 변곡점을 갖고 있습니다. 즉, 사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\) \((a\ne 0)\)의 그래프가 이중접선을 가질 조건은 함수 \(f(x)\)의 그래프가 변곡점을 가질 조건과 같습니다. 즉, 

$$\begin{align}&\text{변곡점을 갖는 사차함수}\\
&\Leftrightarrow\text{이중접선을 갖는 사차함수}\end{align}$$

이고, \(f(x)\)의 그래프가 이중접선을 갖기 위한 조건은

$$3b^2-8ac>0$$

입니다. 그리고 이 때, 이중접선의 방정식은

$$y=\left(\frac{b(b^2-4ac)}{8a^2}+d\right)x-\frac{(b^2-4ac)^2}{64a^3}+e$$

입니다. 이 글에서는 이 조건을 증명하고, 이중접선의 방정식을 유도합니다.

(more…)

사차함수의 그래프가 변곡점을 가질 조건

사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\)의 그래프가 두 개의 변곡점을 가질 조건은

$$3b^2-8ac>0$$

이고, 두 변곡점의 \(x\)좌표는

$$\frac{-3b\pm\sqrt{3(3b^2-8bc)}}{12a}$$

입니다. 이 글에서는 이 조건의 원리를 알아보고 변곡점을 갖고 있는 사차함수 그래프의 모양을 살펴봅니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

특정한 조건을 만족하는 삼차방정식의 근의 개수 Ⅰ

문제를 풀다보면 특정한 조건을 만족하는 상황에서 삼차방정식 \(f(x)=0\)의 근의 개수를 구해야 할 때가 종종 있습니다. 삼차함수 \(f(x)\)와 도함수 \(f'(x)\), 두 실수 \(\alpha\)와 \(\beta\)에 대해, \(f'(\alpha)=f'(\beta)=0\)이면, 삼차방정식 \(f(x)=0\)의 근의 개수는 다음과 같은 방법으로 구할 수 있습니다.

$$\begin{array}{c|c} \text{조건} & \text{근의 개수}\\\hline
f(\alpha)f(\beta)>0 & \text{\(1\)개}\\\hline
f(\alpha)f(\beta)=0 & \begin{array} {c|c} \alpha=\beta & \text{\(1\)개}\\\hline \alpha \ne \beta & \text{\(2\) 개}\end{array} \\\hline
f(\alpha)f(\beta)<0 & \text{\(3\) 개}
\end{array}$$

이 글에서는 조건 \(f'(\alpha)=f'(\beta)=0\)을 만족할 때, 삼차방정식 \(f(x)=0\)의 근의 개수를 구하는 방법을 살펴보고, 이렇게 경우를 나눌 때의 장점은 무엇인지 생각해 보겠습니다. (more…)

첫째항부터 성립하는 수열과 공합 S0의 관계

수열 \(\{a_n\}\)의 첫째항부터 제 \(0\)항 까지의 합을 공합(空合, empty sum)이라고 부릅니다. 첫째항부터 제 \(n\)항까지의 합을 \(S_n\)이라고 할 때, $$a_n=S_n-S_{n-1}$$이 \(n=1\)부터 성립할 필요충분조건은

$$S_0=0$$

첫째항부터 제 \(0\)항까지의 합을 어떻게 정의할 수 있을까요? 그리고 그 의미는 무엇일까요? 이 글에서는 조건 \(S_0=0\)의 필요충분성을 증명하고, 공합 \(S_0\)의 의미를 알아봅니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

가중 무게 중심 위치와 넓이비 (비법공식)

$$a\overrightarrow{PA}+b\overrightarrow{PB}+c\overrightarrow{PC}=\overrightarrow{0}$$ 가 성립할 때 점 \(P\)를 \(\triangle{ABC}\)의 가중 무게 중심이라고 합니다.  또한  $$\triangle PBC:\triangle PCA:\triangle PAB=a:b:c$$가 됩니다. 이 글에서는 선분과 삼각형의 가중 무게 중심의 위치를 찾는 법과 가중 무게 중심의 위치 벡터, 삼각형의 넓이비에 대해서 알아보겠습니다.

(more…)

중학교 수학만으로 증명하는 점-직선사이의 거리

점과 직선사이의 거리를 구하는 공식은 다음과 같습니다.

점\(\mathrm{P}(x_0,y_0)\)부터 직선 \(l\):\(ax+by+c=0\)까지의 거리$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$

점과 직선사이의 거리 공식은 고등학교 교과 과정에서 배우는 것이지만 중학교 교과 과정에서 배우는 기본적인 도구만을 사용하여 이 공식을 증명할 수 있습니다. 이 글에서는 중학교 교과 과정의 수학만을 사용하여 점과 직선사이의 거리 공식을 증명합니다.

(more…)

메넬라우스의 정리 사용 설명서

$$\mathrm{\frac{AP}{PB}\cdot\frac{QC}{BQ}\cdot\frac{RA}{CR}}=1$$

메넬라우스의 정리는 그 증명을 이해해도 사용하는 방법을 잘 익혀두지 않으면 실제로 문제를 풀 때 능숙하게 쓰기 어려운 정리입니다. 하지만 일단 사용 방법을 익혀두면 답을 구하는데 아주 편리하게 사용할 수 있는 정리이기도 합니다. 이 글에서는 평면 벡터와 같은 문제에서 메넬라우스의 정리를 잘 쓸 수 있는 방법에 대해 살펴봅니다.

(more…)

소소하지만 확실한 테크닉 – 삼각함수 근사를 이용한 극한의 계산

  \(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.

\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$

이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다.

(more…)

그래프의 확대 및 축소 변환

\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$

\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$

그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.

(more…)