3원 3차 다항식의 인수분해와 응용

3개의 문자를 사용한 3차 다항식 \(x^3+y^3+z^3-3xyz\) 은 거의 모든 참고서나 문제집에서 볼 수 있을 정도로 중요한 식입니다. 특히 이 다항식은 문자의 순서를 바꾸어도 그 결과가 문자의 순서를 바꾸기 전과 변함이 없는 대칭식입니다. 이 글에서는 \( x^3+y^3+z^3-3xyz\) 과 같은 3개의 문자를 사용한 3차 다항식의 인수분해와 그 응용을 다루어 봅니다. (more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 미분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$

입니다. 이 글에서는 역삼각함수의 도함수를 구하는 방법과 그 원리를 설명합니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 적분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$

입니다. 이 글에서는 역함수 치환적분의 원리를 설명하고, 이를 이용해서 역삼각함수의 적분을 증명해 보겠습니다.

(more…)

주제별 글 목록

주제별로 글을 정리한 목록입니다. 아직 완전히 정리된 것은 아닙니다, 앞으로 글을 올리면서 목록이 길어지면 교과별로 나눌 예정입니다. 글 제목을 클릭하면 해당 글로 이동합니다.

(more…)

역함수의 함정 Ⅱ, 함수와 역함수의 교점

함수 \(f(x)\)와 \(f(x)\)의 역함수 \(g(x)\)의 그래프가 모두 \((a,b)\)를 지날 때, 다음 문장은 참일까요? 거짓일까요?

[진실?/거짓?] 함수 \(f(x)\)와 역함수 \(g(x)\)의 모든 교점 \((a,b)\)는 직선 \(y=x\)위에 있다.

이 글에서는 함수와 역함수의 교점에 대해 흔히 빠질 수 있는 논리 함정에 대해 이야기 하고, 함수와 역함수의 교점에 대한 중요한 몇가지 성질들에 대해 이야기 합니다. (more…)