전설의 수학 문제를 찾아서 – 원탁위의 카드 (2) (2016, 서울대)

전설의 수학 문제를 찾아서 8번째 문제 2016학년도 서울대 구술 고사 문제인 원탁위의 카드 두번째 글입니다. 일대일 대응의 개념을 사용하여 만들어진 멋진 문제입니다. 이 문제에서 우리가 배울 수 있는 일대일 대응의 성질은 무엇일까요?

(more…)

함수와 역함수의 교점, 그리고 함수 순환의 예고편 – 2019학년도 6월 모의고사 나형 29번

2019학년도 6월 모의고사 29번은 역함수의 함정 Ⅱ, 함수와 역함수의 교점에서 언급한 성질을 아주 잘 보여주는 문제입니다. 이 글에서는 문제를 풀어보면서 함수와 역함수의 교점에 대한 성질을 어떻게 이용하는지 살펴보고 더 나아가 함수의 순환에 대해서도 간단히 언급해 보겠습니다.

①. 함수 \(f(x)\)가 증가함수이면, 함수 \(f(x)\)와 역함수 \(f^{-1}(x)\)의 모든 교점은 직선 \(y=x\)위에 존재한다.
②. 함수와 역함수의 교점이 \((a,b)\)이면, \((b,a)\)도 두 함수의 교점이다.

2019학년도 6월 모의고사 나형 29번

함수 $$f(x)=\begin{cases}
ax+b, & \text{$x\lt 1$}\\[2ex]
cx^2+\frac{5}{2}x, & \text{$x\geq 1$}
\end{cases}$$

이 실수 전체의 집합에서 연속이고 역함수를 갖는다. 함수 \(y=f(x)\)의 그래프와 역함수 \(y=f^{-1}(x)\)의 그래프의 교점의 개수가 3이고, 그 교점의 \(x\)좌표가 각각 \(-1\), \(1\), \(2\)일 때, \(2a+4b-10c\)의 값을 구하시오. (단, \(a\), \(b\), \(c\)는 상수이다.)

(more…)

문제로 배우는 문제 풀이 전략 – 불변성, 2010학년도 3월 모의고사 가형 21번


불변성이란 일반적으로,

조작이나, 반복이 계속될 때에도 바뀌지 않는 특수한 상황

을 뜻합니다. 불변성이라는 단어는 조금 생소하게 들릴수도 있지만 사실은 일상 생활에서도 자주 쓰이는 수학적 개념입니다.  등차 수열에서 인접한 두 항의 차이가 항상 일정(공차)하거나 수열의 귀납적 관계(점화식)관계 등이 바로 불변성을 사용하는 좋은 예입니다. 이 글에서는 2009학년도 3월 모의고사 가형 21번을 통해 불변성에 대해 이야기 해보겠습니다.

(more…)