항등식의 기술

$$f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$라고 할 때,

서로 다른 \(n+1\)개의 실수 \(p_1,p_2,…,p_{n+1}\)에 대해,  $$\begin{align}
&f(p_1)=f(p_2)=\cdots=f(p_{n+1})=0\\
&\Leftrightarrow f(x)=0 \text{이 }x\text{에 대한 항등식}\end{align}$$

  항등식에 관한 문제를 풀다보면 이 사실을 핵심으로 하는 풀이를 가진 문제를 종종 볼 수 있습니다.  이 글에서는 이 명제를 증명하고, 실제 문제에서 어떻게 이 명제를 사용할 수 있는지 살펴보겠습니다.

(more…)