함수와 역함수의 교점, 그리고 함수 순환의 예고편 – 2019학년도 6월 모의고사 나형 29번

2019학년도 6월 모의고사 29번은 역함수의 함정 Ⅱ, 함수와 역함수의 교점에서 언급한 성질을 아주 잘 보여주는 문제입니다. 이 글에서는 문제를 풀어보면서 함수와 역함수의 교점에 대한 성질을 어떻게 이용하는지 살펴보고 더 나아가 함수의 순환에 대해서도 간단히 언급해 보겠습니다.

①. 함수 \(f(x)\)가 증가함수이면, 함수 \(f(x)\)와 역함수 \(f^{-1}(x)\)의 모든 교점은 직선 \(y=x\)위에 존재한다.
②. 함수와 역함수의 교점이 \((a,b)\)이면, \((b,a)\)도 두 함수의 교점이다.

2019학년도 6월 모의고사 나형 29번

함수 $$f(x)=\begin{cases}
ax+b, & \text{$x\lt 1$}\\[2ex]
cx^2+\frac{5}{2}x, & \text{$x\geq 1$}
\end{cases}$$

이 실수 전체의 집합에서 연속이고 역함수를 갖는다. 함수 \(y=f(x)\)의 그래프와 역함수 \(y=f^{-1}(x)\)의 그래프의 교점의 개수가 3이고, 그 교점의 \(x\)좌표가 각각 \(-1\), \(1\), \(2\)일 때, \(2a+4b-10c\)의 값을 구하시오. (단, \(a\), \(b\), \(c\)는 상수이다.)

(more…)

합성함수의 적분가능성과 치환적분법의 관계 – 2020학년도 9월 모의고사 가형 30번

2020학년도 9월 모의고사 30번은 평가원이 ‘적분법’에 대한 문제를 어떻게 만들고 무엇을 강조하는지를 다시 한번 분명히 보여주는 문제입니다.

실수 전체의 집합에서 미분가능한 함수 \(f(x)\)가 모든 실수 \(x\)에 대하여
$$f'(x^2+x+1)=\pi f(1)\sin\pi x + f(3)x+5x^2\tag{1}\label{eq1}$$ 을 만족시킬 때, \(f(7)\)의 값을 구하시오.

이 문제를 풀기 위해서는 합성함수의 적분법이 필요합니다. 함성함수의 적분법과 치환적분법은 어떠한 관계가 있을까요? 그리고 평가원의 출제의도와 의미는 무엇일까요? 그리고 이 문제는 좋은 30번 문제일까요?

(more…)

삼차함수 그래프의 대칭성과 4등분 법칙

삼차함수 \(y=ax^3+bx^2+cx+d\) 의 그래프는  다음과 같은 대칭성을 가지고 있습니다.

대칭성① : 삼차함수의 그래프는 변곡점 \(\left(-\dfrac{b}{3a}, f(-\dfrac{b}{3a})\right)\)에 대해 점대칭이다.
대칭성② : 삼차함수의 그래프는 합동인 \(8\)개의 평행사변형으로 분할할 수 있다.(\(4\)등분 법칙)

이 글에서는 삼차함수 그래프의 대칭성을 증명하고, 이 대칭성을 활용하는 법에 대해 이야기 합니다.

(more…)

벡터의 내적 문제에 맞서는 최강의 공식 – 벡터와 중선

삼각형의 중선을 이용하면 복잡한 벡터의 내적 문제를 쉽게 풀 수 있습니다. 삼각형 OAB에서 선분 \(\mathrm{AB}\)의 중점을 \(\mathrm{M}\) 이라 하면 다음과 같은 사실이 성립합니다.

$$\mathrm{\overrightarrow{OA}\cdot\overrightarrow{OB}=OM^2-MB^2}\tag{*}\label{eq*}$$

이 공식은 벡터의 내적 문제, 특히 최대/최소 문제를 해결하기 위한 최강의 공식 중 하나입니다. 이 글에서는 이 공식의 증명과 그 의미를 설명하고, 이 공식과 관계있는 기출 문제를 풀어봅니다.

(more…)

정답을 부르는 개념 – 이항계수의 흡수 항등식

이항계수의 흡수 항등식 (absorption identity)는 약방의 감초처럼 이항계수를 사용하는 수식에서 자주 쓰이는 항등식입니다. 이 항등식을 직접 설명하고 있는 교과서는 없지만, 사실 이 항등식은 평가원 기출문제에서 종종 사용될 정도로 중요한 항등식입니다.

자연수 \(r(1\leq r \leq k)\)에 대하여$$_kC_r=\frac{k}{r}\times _{k-1}C_{r-1}$$

이 글에서는 이 항등식을 증명하고, 이 항등식을 활용하는 방법과 과거 평가원 기출문제에서 이 항등식이 어떻게 다루었는지에 대해 이야기 해보겠습니다. (more…)

이차곡선 문제의 핵심 전략 (2) – 2013학년도 6월 모의고사 27번

이차곡선 문제를 풀 때 사용할 수 있는 핵심 전략은 다음과 같습니다.

● 타원의 정의를 이용할 수 있는 보조선 그리기
● 동일한 구조의 식에서 방정식 추론하기 (주어진 식을 보고 사용할 식을 결정)
● 근과 계수의 관계
● 중점 연결 정리(타원, 쌍곡선)

이 글에서는 다음 문제의 풀이를 통해서 이러한 핵심 전략을 문제에서 어떻게 사용할 수 있는지 알아보겠습니다.

2013학년도 6월 모의고사 가형 27번

두점 \(\mathrm F(5,0)\), \(\mathrm F'(-5,0)\)을 초점으로 하는 타원 위의 서로 다른 두 점 \(\mathrm P\), \(\mathrm Q\)에 대하여 원점 \(\mathrm O\)에서 선분 \(\mathrm{PF}\)와 선분 \(\mathrm{QF’}\)에 내린 수선의 발을 각각 \(\mathrm H\)와 \(\mathrm I\)라 하자. 점 \(\mathrm H\)와 \(\mathrm I\)가 각각 선분 \(\mathrm{PF}\)와 선분 \(\mathrm{QF’}\)의 중점이고, \(\mathrm{\overline{OH}\times\overline{OI}=10}\)일 때, 이 타원의 장축의 길이를 \(l\)이라 하자. \(l^2\)의 값을 구하시오. (단, \(\mathrm{\overline{OH}\neq\overline{OI}}\))

(more…)

소확테 2개의 환상의 콜레보 – 2018학년도 수능 나형 30번

가끔은 아주 어려워 보이는 문제가 단순한 테크닉의 조합만으로 쉽게 풀리는 경우가 있습니다. 2018학년도 수능 나형 30번이 그러한 경우입니다. 이 문제를 풀기 위해서 필요한 것은 [소소하지만 확실한 테크닉] 2개와 (조금 길긴 하지만) 단순한 계산 뿐입니다.

2018학년도 수능 나형 30번

이차함수 \(f(x)=\dfrac{3x-x^2}{2}\) 에 대하여 구간 \([0,\infty)\) 에서 정의된 함수 \(g(x)\) 가 다음 조건을 만족시킨다.

(가) \(0\leq x\lt 1\) 일 때, \(g(x)=f(x)\) 이다.
(나) \(n\leq x \lt n+1\) 일 때, $$g(x)=\frac{1}{2^n}\{f(x-n)-(x-n)\}+x$$이다. (단, \(n\)은 자연수이다.)

어떤 자연수 \(k(k\geq 6)\)에 대하여 함수 \(h(x)\)는 $$h(x)=
\begin{cases}
g(x) & \text{($0\leq x \lt 5$ 또는 $x\geq k$)}\\
2x-g(x) & \text{($5\leq x \lt k$)}
\end{cases}$$이다. 수열 \(\{a_n\}\)을 \(a_n=\displaystyle\int_0^nh(x)dx\) 라 할 때, $$\lim\limits_{n\to\infty}(2a_n-n^2)=\frac{241}{768}$$이다. \(k\)의 값을 구하시오.

(more…)