미적분 부등식의 GOAT (feat. 조화급수, 2017 한양대 자연)

이 글에서는 미적분에서 가장 중요한 부등식 중 하나를 소개합니다. 이 부등식은 미적분의 여러 부등식 문제에서 약방의 감초처럼 사용되는 아주 중요한 부등식으로, 이 부등식의 특징은 입시문제에서 자주 사용하는 중요한 소재 중 하나입니다.

$$\ln x \leq x-1\tag{1}\label{eq1}$$

이 글에서는 이 부등식이 성립하는 이유를 알아보고 이 부등식의 특징과 활용방법 그리고 이 부등식을 이용한 입시 문제를 살펴보겠습니다.

(more…)

소소하지만 확실한 테크닉 – 삼차함수의 극댓값과 극솟값의 합

삼차함수 $$f(x)=ax^3+bx^2+cx+d$$가 \(x=\alpha\), \(x=\beta\) 에서 각각 극댓값과 극솟값 \(f(\alpha)\)  \(f(\beta)\)를 갖고 변곡점의 좌표가 \((m, f(m))\) 일 때, 두 극값의 합 \(f(\alpha)+f(\beta)\)는 다음과 같습니다.

$$f(\alpha)+f(\beta)=2f(m)=2f\left(\frac{\alpha+\beta}{2}\right)$$

이 식을 사용하면 극값의 합과 관계된 문제에서 복잡한 계산을 많이 줄일 수 있습니다. 이 글에서는 두 극값의 합이 변곡점과 어떤 관계를 갖고 있는지 설명합니다.

(more…)

삼차함수의 두 극점을 지나는 직선의 성질

3차함수의 두 극점을 지나는 직선은 다음과 같은 성질을 가지고 있습니다.

(1) 3차함수의 두 극점을 지나는 직선은 언제나 3차함수의 변곡점을 지난다.
(2) 두 극점을 지나는 직선의 기울기=변곡점에서의 접선의 기울기\(\times\dfrac{2}{3}\)

이 글에서는 3차함수의 두 극점을 지나는 직선의 성질을 증명하고, 이 성질을 사용한 해법을 생각해봅니다.

(more…)

소소하지만 확실한 테크닉 – 삼차함수의 극값의 차

3차함수 $$f(x)=ax^3+bx^2+cx+d$$가 \(x=\alpha\), \(x=\beta\) (단, \(\alpha<\beta\)) 에서 극값 \(f(\alpha)\)와 \(f(\beta)\)를 가질 때, 두 극값의 차는 다음과 같습니다.

$$
|f(\alpha)-f(\beta)|=\frac{|a|}{2}(\beta-\alpha)^3\tag{1}\label{eq0}$$

이 글에서는 이 공식의 증명과 활용에 대해 이야기 합니다.

(more…)

전설의 수학 문제를 찾아서 – 삼차함수의 최대/최소 (1991, 동경대)

전설의 수학 문제를 찾아서, 5번째 문제는 3차함수의 최대/최소 문제입니다. 1991년 동경대 입시 문제로, 많은 사람들을 놀라게 했던 문제입니다.

구간 \(-\dfrac{7}{4}\leq x \leq 3\) 에서 함수 \(f(x)=x^3-2x^2-3x+4\) 의 최댓값과 최솟값을 구하시오

이 문제는 평범한 문제입니다. 하지만 이 문제는 어려운 문제입니다. 이 문제에 담겨있는 출제자의 의도는 무엇일까요? 그리고 이 문제에서 배울 수 있는 것은 무엇일까요?  (more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 미분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$

입니다. 이 글에서는 역삼각함수의 도함수를 구하는 방법과 그 원리를 설명합니다.

(more…)