정\(2n\)각형(\(n\ge 3\))의 세 꼭지점을 연결해 만든 삼각형중에서
$$\text{예각삼각형의 개수:둔각삼각형의 개수}=1:3$$
이 글에서는 정\(2n\)각형에서 \(1:3\) 법칙이 성립하는 이유를 알아보고 활용방법을 생각해보겠습니다.정\(2n\)각형(\(n\ge 3\))의 세 꼭지점을 연결해 만든 삼각형중에서
$$\text{예각삼각형의 개수:둔각삼각형의 개수}=1:3$$
이 글에서는 정\(2n\)각형에서 \(1:3\) 법칙이 성립하는 이유를 알아보고 활용방법을 생각해보겠습니다.이 글에서는 항등식의 기술이 문제에서 어떻게 사용되는지를 살펴보고자 합니다. 이 문제는 항등식의 기술이 문제가 요구하는 모순을 어떻게 이끌어 낼 수 있는지를 잘 보여주는 문제입니다.
서로의 차가 \(2\)이상인 네 정수 $$p>q>r>s$$가 주어질 때 다음 조건 (가), (나)를 모두 만족하는 계수가 정수인 3차 다항식 \(f(x)\)가 존재할 수 없음을 보이시오. $$\begin{align}
&A=f(p)-f(q), B=f(q)-f(r)\\
&C=f(r)-f(s), D=f(s)-f(p)\\
\end{align}$$라 하면, $$\begin{align}
&\text{(가) } ABCD<0\\
&\text{(나) } |A|,|B|,|C|,|D|\text{ 는 모두 소수}
\end{align}$$
$$f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$라고 할 때,
서로 다른 \(n+1\)개의 실수 \(p_1,p_2,…,p_{n+1}\)에 대해, $$\begin{align}
&f(p_1)=f(p_2)=\cdots=f(p_{n+1})=0\\
&\Leftrightarrow f(x)=0 \text{이 }x\text{에 대한 항등식}\end{align}$$
어떤 함수와 도함수의 합이나 차가 지수함수와 곱해져 있는 식을 적분할 때, 다음 식을 이용하면 무척 편하게 부정적분을 구할 수 있는 경우가 있습니다.
$$\begin{align}
&\int (f(x)+f'(x))e^x dx=f(x)e^x+C\\
&\int (f(x)-f'(x))e^{-x} dx =-f(x)e^{-x}+C\\
\end{align}$$
이 글에서는 미적분에서 가장 중요한 부등식 중 하나를 소개합니다. 이 부등식은 미적분의 여러 부등식 문제에서 약방의 감초처럼 사용되는 아주 중요한 부등식으로, 이 부등식의 특징은 입시문제에서 자주 사용하는 중요한 소재 중 하나입니다.
$$\ln x \leq x-1\tag{1}\label{eq1}$$
이 글에서는 이 부등식이 성립하는 이유를 알아보고 이 부등식의 특징과 활용방법 그리고 이 부등식을 이용한 입시 문제를 살펴보겠습니다.
전설의 수학 문제를 찾아서 8번째 문제 2016학년도 서울대 구술 고사 문제인 원탁위의 카드 두번째 글입니다. 일대일 대응의 개념을 사용하여 만들어진 멋진 문제입니다. 이 문제에서 우리가 배울 수 있는 일대일 대응의 성질은 무엇일까요?
이 글에서는 사인법칙과 제1 코사인법칙, 제2 코사인법칙의 흥미로운 관계에 대해 설명합니다. 과연 이 법칙들사이에 존재하는 비밀은 무엇일까요?
이 글에서는 사인법칙과 제1 코사인법칙, 제2 코사인법칙의 흥미로운 관계에 대해 설명합니다. 과연 이 법칙들사이에 존재하는 비밀은 무엇일까요?
\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,
$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$
\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,
$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$
\(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.
\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$
이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다. 조립제법이란 다항식을 일차식으로 나눈 몫과 나머지를 곱셈과 덧셈만을 반복하여 빠르게 구하는 방법입니다. 다항식을 일차식으로 나누면 특별한 귀납적 관계를 발견할 수 있습니다. 이 귀납적 관계를 핵심원리로 삼아 만들어진 방법이 바로 조립제법입니다. 이 글에서는 일차식의 나눗셈이 가지고 있는 귀납적 관계를 살펴보고 조립제법이 어떻게 이 원리를 사용하고 있는지 알아보겠습니다.
3차함수 $$f(x)=ax^3+bx^2+cx+d$$가 \(x=\alpha\), \(x=\beta\) (단, \(\alpha<\beta\)) 에서 극값 \(f(\alpha)\)와 \(f(\beta)\)를 가질 때, 두 극값의 차는 다음과 같습니다.
$$
|f(\alpha)-f(\beta)|=\frac{|a|}{2}(\beta-\alpha)^3\tag{1}\label{eq0}$$
$$a\overrightarrow{PA}+b\overrightarrow{PB}+c\overrightarrow{PC}=\overrightarrow{0}$$ 가 성립할 때 점 \(P\)를 \(\triangle{ABC}\)의 가중 무게 중심이라고 합니다. 또한 $$\triangle PBC:\triangle PCA:\triangle PAB=a:b:c$$가 됩니다. 이 글에서는 선분과 삼각형의 가중 무게 중심의 위치를 찾는 법과 가중 무게 중심의 위치 벡터, 삼각형의 넓이비에 대해서 알아보겠습니다.
3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고, x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는
$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$
이 글에서는 이 식의 간단한 증명을 소개합니다.
이 글에서는 삼각함수×지수함수의 테이블 적분법에 대해 설명합니다. 예를 들어, $$\int \sin x\cdot e^x dx$$의 테이블 적분은 다음과 같습니다. $$\begin{array}{ccc} D && I\\
\hline
\sin x&{}&e^x\\
{}&\searrow{+}&{}\\
\cos x&{}&e^x\\
{}&\searrow{-}&{}\\
-\sin x&\bbox[yellow]{\rightarrow{+}}&e^x\\
\end{array}$$$$\int \sin x\cdot e^xdx=+(\sin x\cdot e^x)-(\cos x\cdot e^x)+\bbox[yellow]{\int(-\sin x)\cdot e^x dx}$$