
정\(2n\)각형(\(n\ge 3\))의 세 꼭지점을 연결해 만든 삼각형중에서
$$\text{예각삼각형의 개수:둔각삼각형의 개수}=1:3$$
이 글에서는 정\(2n\)각형에서 \(1:3\) 법칙이 성립하는 이유를 알아보고 활용방법을 생각해보겠습니다.
정\(2n\)각형(\(n\ge 3\))의 세 꼭지점을 연결해 만든 삼각형중에서
$$\text{예각삼각형의 개수:둔각삼각형의 개수}=1:3$$
이 글에서는 정\(2n\)각형에서 \(1:3\) 법칙이 성립하는 이유를 알아보고 활용방법을 생각해보겠습니다.이 글에서는 항등식의 기술이 문제에서 어떻게 사용되는지를 살펴보고자 합니다. 이 문제는 항등식의 기술이 문제가 요구하는 모순을 어떻게 이끌어 낼 수 있는지를 잘 보여주는 문제입니다.
서로의 차가 \(2\)이상인 네 정수 $$p>q>r>s$$가 주어질 때 다음 조건 (가), (나)를 모두 만족하는 계수가 정수인 3차 다항식 \(f(x)\)가 존재할 수 없음을 보이시오. $$\begin{align}
&A=f(p)-f(q), B=f(q)-f(r)\\
&C=f(r)-f(s), D=f(s)-f(p)\\
\end{align}$$라 하면, $$\begin{align}
&\text{(가) } ABCD<0\\
&\text{(나) } |A|,|B|,|C|,|D|\text{ 는 모두 소수}
\end{align}$$
$$f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$라고 할 때,
서로 다른 \(n+1\)개의 실수 \(p_1,p_2,…,p_{n+1}\)에 대해, $$\begin{align}
&f(p_1)=f(p_2)=\cdots=f(p_{n+1})=0\\
&\Leftrightarrow f(x)=0 \text{이 }x\text{에 대한 항등식}\end{align}$$
어떤 함수와 도함수의 합이나 차가 지수함수와 곱해져 있는 식을 적분할 때, 다음 식을 이용하면 무척 편하게 부정적분을 구할 수 있는 경우가 있습니다.
$$\begin{align}
&\int (f(x)+f'(x))e^x dx=f(x)e^x+C\\
&\int (f(x)-f'(x))e^{-x} dx =-f(x)e^{-x}+C\\
\end{align}$$
이 글에서는 미적분에서 가장 중요한 부등식 중 하나를 소개합니다. 이 부등식은 미적분의 여러 부등식 문제에서 약방의 감초처럼 사용되는 아주 중요한 부등식으로, 이 부등식의 특징은 입시문제에서 자주 사용하는 중요한 소재 중 하나입니다.
$$\ln x \leq x-1\tag{1}\label{eq1}$$
이 글에서는 이 부등식이 성립하는 이유를 알아보고 이 부등식의 특징과 활용방법 그리고 이 부등식을 이용한 입시 문제를 살펴보겠습니다.
전설의 수학 문제를 찾아서 8번째 문제 2016학년도 서울대 구술 고사 문제인 원탁위의 카드 두번째 글입니다. 일대일 대응의 개념을 사용하여 만들어진 멋진 문제입니다. 이 문제에서 우리가 배울 수 있는 일대일 대응의 성질은 무엇일까요?
이 글에서는 사인법칙과 제1 코사인법칙, 제2 코사인법칙의 흥미로운 관계에 대해 설명합니다. 과연 이 법칙들사이에 존재하는 비밀은 무엇일까요?

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고, x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는
$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$
이 글에서는 이 식의 간단한 증명을 소개합니다.
함수 \(f(x)\)와 \(f(x)\)의 역함수 \(g(x)\)의 그래프가 모두 \((a,b)\)를 지날 때, 다음 문장은 참일까요? 거짓일까요?
[진실?/거짓?] 함수 \(f(x)\)와 역함수 \(g(x)\)의 모든 교점 \((a,b)\)는 직선 \(y=x\)위에 있다.
이 글에서는 함수와 역함수의 교점에 대해 흔히 빠질 수 있는 논리 함정에 대해 이야기 하고, 함수와 역함수의 교점에 대한 중요한 몇가지 성질들에 대해 이야기 합니다. (more…)
좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

이차함수와 두 접선으로 둘러 싸인 넓이는 $$\mathcal{A}=\frac{|a|}{12}|\beta-\alpha|^3$$ 입니다. 이 공식에 대한 증명을 설명합니다.
\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$
\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$
그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.
이 글에서는 \(\sec x \)와 \(\csc x\)의 3가지 적분 방법을 설명합니다. 세 방법 모두 다음 적분을 기본으로 사용하고 있습니다.
$$\int \frac{f'(x)}{f(x)}dx=\ln|f(x)| + C$$
4차 함수 \(y=ax^4+bx^3+cx^2+dx+e\) 의 그래프가 직선 \(y=mx+n\)의 그래프와 x좌표가 각각 α, β (단, β > α) 인 두 점에서 이중으로 접할 때 4차 함수의 그래프와 이중 접선으로 둘러싸인 부분의 넓이는 $$\begin{align}&\int_{\alpha}^{\beta}|ax^4+bx^3+cx^2+dx+e-(mx+n)|dx\\
&=\int_{\alpha}^{\beta}|a(x-\alpha)^2(x-\beta)^2|dx\\
&=\frac{|a|}{30}(\beta-\alpha)^5\end{align}$$
이 글에서는 이 식의 증명을 소개합니다. (more…)
이 글에서는 산술 기하 평균 부등식을 의미를 살펴보고, 산술 기하 평균 부등식을 올바르게 사용하는 방법에 대해 알아봅니다. (more…)
이중접선을 갖는 사차함수의 그래프는 어떤 특징을 갖고 있을까요? 놀랍게도 변곡점을 갖는 모든 사차함수는 이중접선을 갖고 있습니다. 반대로 이중접선을 갖는 사차함수는 변곡점을 갖고 있습니다. 즉, 사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\) \((a\ne 0)\)의 그래프가 이중접선을 가질 조건은 함수 \(f(x)\)의 그래프가 변곡점을 가질 조건과 같습니다. 즉,
$$\begin{align}&\text{변곡점을 갖는 사차함수}\\
&\Leftrightarrow\text{이중접선을 갖는 사차함수}\end{align}$$
$$3b^2-8ac>0$$
입니다. 그리고 이 때, 이중접선의 방정식은$$y=\left(\frac{b(b^2-4ac)}{8a^2}+d\right)x-\frac{(b^2-4ac)^2}{64a^3}+e$$
입니다. 이 글에서는 이 조건을 증명하고, 이중접선의 방정식을 유도합니다.