이차함수의 그래프와 두 직선으로 둘러싸인 넓이의 고속 적분 – 1/3 공식

포물선과 직선으로 둘러 싸인 부분의 넓이를 빠르게 구할 수 있는 고속 적분 공식을 설명합니다.

포물선인 이차함수 \(y=ax^2+bx+c\)의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접할 때, 포물선과 접선, 직선 x=β 로 둘러 싸인 부분의 넓이는 $$\frac{|a|}{3}|\beta-\alpha|^3$$ 입니다. 예를 들어, \(\alpha<\beta\)일 때,  구하려는 부분의 넓이는$$\begin{align}&\int_{\alpha}^{\beta}\left|(ax^2+bx+c-(mx+n))\right|dx\\&=\frac{|a|}{3}|\beta-\alpha|^3\end{align}$$입니다.

(more…)

sin(x), cos(x)를 tan(x/2)로 나타내기 – Weierstrass 치환

\(t=\tan\frac{x}{2}\) 로 치환하면 \(\sin x\) 와 \(\cos x\) 를 \(t\) 로 표현할 수 있습니다.

$$\begin{equation}\begin{aligned}\sin x&=\frac{2t}{1+t^2}\\\cos x&=\frac{1-t^2}{1+t^2}\end{aligned}\end{equation}$$

이 결과는 삼각함수의 치환적분에 유용하게 사용할 수 있습니다. 이 글에서는 이 변형의 증명과 응용을 설명합니다.

(more…)

이차곡선 문제의 핵심 전략 (1) – 2014학년도 6월 모의고사 19번

이차 곡선 문제를 풀 때 사용하는 핵심 전략 중 하나는 다음과 같습니다.

1. 주어진 조건을 보고 사용할 식을 결정한다
2. 근과 계수의 관계

이 글에서는 2014학년도 9월 모의고사 19번의 풀이를 통해 이 전략을 어떻게 사용할 수 있는지 구체적으로 알아보겠습니다. (more…)

소소하지만 확실한 테크닉 – 조건부 확률 문장 바꾸기

조건부 확률 문제에서 임의로 선택한 1명이 A를 만족할 때, B를 만족할 확률은

A를 만족하는 사람들 중 B를 만족하는 사람이 차지하는 비율

이라는 문장으로 바꾸면 조건부 확률을 쉽게 구할 수 있습니다. 이 글에서는 이렇게 문제를 바꾸는 것이 가능한 이유와 이 것을 이용해서 조건부 확률을 구하는 법을 소개합니다.

(more…)

전설의 수학 문제를 찾아서 – 상자속의 카드 (1976, 와세다)

전설의 수학 문제를 찾아서, 2번째 문제인 상자속의 카드 문제를 설명합니다. 이 문제는 1976년 와세다 대학교의 입시 문제로 조건부 확률 문제의 마지막이라고 할 수 있는 문제입니다. 이 문제의 풀이를 통해 두 사건의 발생 시점과 조건부 확률이 어떤 의미를 가지는지 대해 살펴보겠습니다.

트럼프 카드 한 벌에서 조커를 제외한 나머지 52장의 카드 중 임의로 한 장을 뽑아 어떤 카드인지 확인하지 않고 상자안에 넣어 두었다. 그리고 나머지 카드중에 3장을 임의로 뽑아 보았더니 모두 다이아몬드 카드였다. 이 때, 상자안의 카드가 다이아몬드 카드일 확률은 얼마인가? (1976, 와세다)

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 미분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$

입니다. 이 글에서는 역삼각함수의 도함수를 구하는 방법과 그 원리를 설명합니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 미분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$

입니다. 이 글에서는 역삼각함수의 도함수를 구하는 방법과 그 원리를 설명합니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 적분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$

입니다. 이 글에서는 역함수 치환적분의 원리를 설명하고, 이를 이용해서 역삼각함수의 적분을 증명해 보겠습니다.

(more…)

조립제법의 원리 – 나눗셈의 귀납적 관계

조립제법이란 다항식을 일차식으로 나눈 몫과 나머지를 곱셈과 덧셈만을 반복하여  빠르게 구하는 방법입니다. 다항식을 일차식으로 나누면 특별한 귀납적 관계를 발견할 수 있습니다. 이 귀납적 관계를 핵심원리로 삼아 만들어진 방법이 바로 조립제법입니다. 이 글에서는 일차식의 나눗셈이 가지고 있는 귀납적 관계를 살펴보고 조립제법이 어떻게 이 원리를 사용하고 있는지 알아보겠습니다.

(more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

소소하지만 확실한 테크닉 – 삼각함수 근사를 이용한 극한의 계산

  \(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.

\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$

이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다.

(more…)

소소하지만 확실한 테크닉 – 90도 회전이동

점 \(\mathrm{A}(a,b)\)를 원점 \(\mathrm{O}\)를 중심으로 반시계방향으로 \(90^\circ\) (또는 \(+90^\circ\)) 회전 이동한 점 \(\mathrm{A^\prime}\)과 시계 방향으로 \(90^\circ\) (또는 \(-90^\circ\)) 회전 이동한 점  \(\mathrm{A^{\prime\prime}}\)의 좌표는 각각 다음과 같습니다. $$\begin{align}&\mathrm{A}(a,b)\xrightarrow{+90^\circ회전}\mathrm{A’}(-b,a)\\
&\mathrm{A}(a,b)\xrightarrow{-90^\circ회전}\mathrm{A^{\prime\prime}}(b,-a)\end{align}$$

이 글에서는 원점을 중심으로 하는 90° 회전 이동의 결과를 증명하고 활용방법에 대해서 이야기 합니다. (more…)

부분적분을 빠르게 – 삼각함수×지수함수의 테이블 적분법

이 글에서는 삼각함수×지수함수의 테이블 적분법에 대해 설명합니다. 예를 들어, $$\int \sin x\cdot e^x dx$$의 테이블 적분은 다음과 같습니다. $$\begin{array}{ccc} D && I\\
\hline
\sin x&{}&e^x\\
{}&\searrow{+}&{}\\
\cos x&{}&e^x\\
{}&\searrow{-}&{}\\
-\sin x&\bbox[yellow]{\rightarrow{+}}&e^x\\
\end{array}$$$$\int \sin x\cdot e^xdx=+(\sin x\cdot e^x)-(\cos x\cdot e^x)+\bbox[yellow]{\int(-\sin x)\cdot e^x dx}$$

(more…)

그래프의 확대 및 축소 변환

\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$

\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$

그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.

(more…)