포물선과 직선으로 둘러 싸인 부분의 넓이를 빠르게 구할 수 있는 고속 적분 공식을 설명합니다.
포물선인 이차함수 \(y=ax^2+bx+c\)의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접할 때, 포물선과 접선, 직선 x=β 로 둘러 싸인 부분의 넓이는 $$\frac{|a|}{3}|\beta-\alpha|^3$$ 입니다. 예를 들어, \(\alpha<\beta\)일 때, 구하려는 부분의 넓이는$$\begin{align}&\int_{\alpha}^{\beta}\left|(ax^2+bx+c-(mx+n))\right|dx\\&=\frac{|a|}{3}|\beta-\alpha|^3\end{align}$$입니다.



조립제법이란 다항식을 일차식으로 나눈 몫과 나머지를 곱셈과 덧셈만을 반복하여 빠르게 구하는 방법입니다. 다항식을 일차식으로 나누면 특별한 귀납적 관계를 발견할 수 있습니다. 이 귀납적 관계를 핵심원리로 삼아 만들어진 방법이 바로 조립제법입니다. 이 글에서는 일차식의 나눗셈이 가지고 있는 귀납적 관계를 살펴보고 조립제법이 어떻게 이 원리를 사용하고 있는지 알아보겠습니다.