이차다항식의 제곱완성이란 이차다항식 \(ax^2+bx+c\)를 다음과 같이 $$ax^2+bx+c=a(x-p)^2+q$$ 완전제곱식 \((x-p)^2\)을 사용하여 식의 모양을 바꾸어주는 것을 말합니다. 바꾸어 주는 것을 을 제곱완성이라고 합니다. 마찬가지로, \(a>0\)인 사차식 \(ax^4+bx^3+cx^2+dx+dx+e\)를 다음과 같이 이차식의 완전제곱식 \((\sqrt{a}x^2+px+q)^2\)을 이용하여 식의 모양을 바꾸는 것을 사차다항식의 제곱완성이라고 합니다.
$$\begin{align}
&ax^4+bx^3+cx^2+dx+e\\
&=(\sqrt{a}x^2+px+q)^2+mx+n\end{align}$$



조립제법이란 다항식을 일차식으로 나눈 몫과 나머지를 곱셈과 덧셈만을 반복하여 빠르게 구하는 방법입니다. 다항식을 일차식으로 나누면 특별한 귀납적 관계를 발견할 수 있습니다. 이 귀납적 관계를 핵심원리로 삼아 만들어진 방법이 바로 조립제법입니다. 이 글에서는 일차식의 나눗셈이 가지고 있는 귀납적 관계를 살펴보고 조립제법이 어떻게 이 원리를 사용하고 있는지 알아보겠습니다.