소소하지만 확실한 테크닉 – 사차다항식의 제곱완성

이차다항식의 제곱완성이란 이차다항식 \(ax^2+bx+c\)를 다음과 같이  $$ax^2+bx+c=a(x-p)^2+q$$ 완전제곱식 \((x-p)^2\)을 사용하여 식의 모양을 바꾸어주는 것을 말합니다. 바꾸어 주는 것을 을 제곱완성이라고 합니다. 마찬가지로, \(a>0\)인 사차식 \(ax^4+bx^3+cx^2+dx+dx+e\)를 다음과 같이 이차식의 완전제곱식 \((\sqrt{a}x^2+px+q)^2\)을 이용하여 식의 모양을 바꾸는 것을 사차다항식의 제곱완성이라고 합니다.

$$\begin{align}
&ax^4+bx^3+cx^2+dx+e\\
&=(\sqrt{a}x^2+px+q)^2+mx+n\end{align}$$

이 글에서는 사차다항식의 제곱완성과 그 응용에 대해서 다루어 보겠습니다.

(more…)

정답을 부르는 개념 – 사차함수와 이중 접선

사차함수의 이중 접선이란 사차함수의 그래프와 서로 다른 두 점에서 동시에 접하는 접선입니다. 이중 접선의 방정식을 구하거나 성질을 이용하는 것은 시험에서 자주 출제되는 아주 중요한 주제중 하나입니다.

이중 접선의 방정식은 여러 방법으로 찾을 수 있습니다. 그중 가장 중요한 것은 두 다항식의 그래프가 접할 때의 성질을 이용한 방법입니다. 이 방법을 사용하면 미분없이 사차함수의 이중 접선을 찾을 수 있습니다.

(more…)

소소하지만 확실한 테크닉 – 삼각함수 근사를 이용한 극한의 계산

  \(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.

\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$

이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다.

(more…)

삼각함수의 극한 값을 간단히 계산 하기 – 2019학년도 9월 모의고사 가형 19번

도형과 관계된 삼각함수의 극한 문제를 풀 때,  몇 가지 사실을 이용하면 복잡한 계산을 하지 않고 문제의 답을 쉽게 구할 수 있는 경우가 있습니다. 2019학년도 9월 모의고사 가형 19번이 바로 이러한 문제입니다. 부채꼴의 중심각의 크기가 0으로 수렴할 때, $$\text{현의 길이$\approx$호의 길이}$$라는 사실을 이용하면 문제의 답을 간단히 구할 수 있습니다.  이 글에서는 이러한 사실을 이용하여 어떻게 극한값을 간단히 구할 수 있을지 알아보겠습니다.

(more…)

소소하지만 확실한 테크닉 – 수열의 합의 위끝과 아래끝 변환

이 글에서는 수열의 합의 위끝과 아래끝을 변환하는 소소하지만 확실한 테크닉을 소개합니다.  이 테크닉은 수열의 합을 보다 간단한 형태로 계산할 때 사용할 수 있는데, 종종 문제 해결의 실마리를 발견하는데 큰 도움이 됩니다.  이 글에서는 이 테크닉을 사용하는 법을 소개하고, 2019학년도 6월 모의고사  20번(가형 나형 공통) 문제를 이 테크닉을 사용해 풀어보겠습니다.

$$\sum_{k=m}^na_{k}=\sum_{k=m-p}^{n-p}a_{k+p}$$

(more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 미분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$

입니다. 이 글에서는 역삼각함수의 도함수를 구하는 방법과 그 원리를 설명합니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 적분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$

입니다. 이 글에서는 역함수 치환적분의 원리를 설명하고, 이를 이용해서 역삼각함수의 적분을 증명해 보겠습니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

주제별 글 목록

주제별로 글을 정리한 목록입니다. 아직 완전히 정리된 것은 아닙니다, 앞으로 글을 올리면서 목록이 길어지면 교과별로 나눌 예정입니다. 글 제목을 클릭하면 해당 글로 이동합니다.

(more…)

역함수의 함정 Ⅱ, 함수와 역함수의 교점

함수 \(f(x)\)와 \(f(x)\)의 역함수 \(g(x)\)의 그래프가 모두 \((a,b)\)를 지날 때, 다음 문장은 참일까요? 거짓일까요?

[진실?/거짓?] 함수 \(f(x)\)와 역함수 \(g(x)\)의 모든 교점 \((a,b)\)는 직선 \(y=x\)위에 있다.

이 글에서는 함수와 역함수의 교점에 대해 흔히 빠질 수 있는 논리 함정에 대해 이야기 하고, 함수와 역함수의 교점에 대한 중요한 몇가지 성질들에 대해 이야기 합니다. (more…)

베이즈 정리와 조건부 확률의 관계

베이즈 정리란 사후 확률 (posterior probability) 을 사전 확률 (prior probability) 를 이용하여 표현하는 방법으로 수학적으로 다음과 같이 표현합니다.

사건 B가 먼저 일어난 후 사건 A가 일어날 때, $$P(B|A)=\frac{P(A|B)\cdot P(B)}{P(A)}$$$$\begin{aligned}P(B|A)&\text{ : 사후 확률, 나중에 일어나는 사건 A를 전제로 하는 조건부 확률}\\
P(B)&\text{ : 사전 확률,  사건 A가 일어나기전 사건 B가 일어날 확률}\\
P(A|B)&\text{ : 사건 B가 일어난 후에 사건 A가 일어날 확률}\end{aligned}$$

이 글에서는 베이즈 정리를 직접 유도해보면서 사후 확률과 베이즈 정리의 의미와 목적에 대해 설명하고, 이 정리를 어떻게 활용할 수 있는지에 대해 이야기 해보겠습니다. (more…)