베이즈 정리와 조건부 확률의 관계

베이즈 정리란 사후 확률 (posterior probability) 을 사전 확률 (prior probability) 를 이용하여 표현하는 방법으로 수학적으로 다음과 같이 표현합니다.

사건 B가 먼저 일어난 후 사건 A가 일어날 때, $$P(B|A)=\frac{P(A|B)\cdot P(B)}{P(A)}$$$$\begin{aligned}P(B|A)&\text{ : 사후 확률, 나중에 일어나는 사건 A를 전제로 하는 조건부 확률}\\
P(B)&\text{ : 사전 확률,  사건 A가 일어나기전 사건 B가 일어날 확률}\\
P(A|B)&\text{ : 사건 B가 일어난 후에 사건 A가 일어날 확률}\end{aligned}$$

이 글에서는 베이즈 정리를 직접 유도해보면서 사후 확률과 베이즈 정리의 의미와 목적에 대해 설명하고, 이 정리를 어떻게 활용할 수 있는지에 대해 이야기 해보겠습니다. (more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

전설의 수학 문제를 찾아서 – 3인의 죄수

전설의 수학 문제를 찾아서, 3번째 문제는 3인의 죄수 문제입니다. 이 문제 역시 전설의 수학 문제 #1과 #2와 같은 조건부 확률 문제입니다. 서벨로니 (Serbelloni) 문제라고도 알려진 이 문제는 1966년 여름 서벨로니 별장에서 열린 이론 생물학회에서 화제가 된 문제입니다.

A, B, C 3명의 죄수가 있습니다. 3명의 죄수 중에서 곧 2명이 처형이 될 예정이고, 3인의 죄수 모두가 이 사실을 알고 있습니다. 하지만 처형이 될 죄수 2명의 이름은 간수만 알고 있습니다. 어느 날 죄수A는 간수에게 죄수B와 C 2명 중에서 적어도 1명이 처형되는 것은 확실하니 B나 C중 누가 처형이 되는지 한 사람의 이름을 말해달라고 부탁했습니다. 이 때 간수는 B가 처형이 될 것이라고 대답해 주었습니다.

이 말을 들은 죄수 A는 자신이 처형될 확률이 낮아졌다고 무척 기뻐했습니다. 대답을 듣기 전 자신이 처형될 확률은 \(\frac{2}{3}\approx 66.7\%\) 였지만 대답을 듣고 난 후 뒤에는 B와 같이 처형될 죄수는 자신이 아니면 C이므로 앞으로 자신이 처형될 확률이 \(\frac{1}{2}=50\%\) 가 되어 자신이 처형될 확률이 간수의 대답을 듣기 전보다 낮아졌다고 생각했기 때문입니다. 간수가 거짓말을 하지 않는다면 과연 죄수의 판단은 옳은 것일까요?

(more…)

문제로 배우는 문제 풀이 전략 – 불변성, 2010학년도 3월 모의고사 가형 21번


불변성이란 일반적으로,

조작이나, 반복이 계속될 때에도 바뀌지 않는 특수한 상황

을 뜻합니다. 불변성이라는 단어는 조금 생소하게 들릴수도 있지만 사실은 일상 생활에서도 자주 쓰이는 수학적 개념입니다.  등차 수열에서 인접한 두 항의 차이가 항상 일정(공차)하거나 수열의 귀납적 관계(점화식)관계 등이 바로 불변성을 사용하는 좋은 예입니다. 이 글에서는 2009학년도 3월 모의고사 가형 21번을 통해 불변성에 대해 이야기 해보겠습니다.

(more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

가중 무게 중심 위치와 넓이비 (비법공식)

$$a\overrightarrow{PA}+b\overrightarrow{PB}+c\overrightarrow{PC}=\overrightarrow{0}$$ 가 성립할 때 점 \(P\)를 \(\triangle{ABC}\)의 가중 무게 중심이라고 합니다.  또한  $$\triangle PBC:\triangle PCA:\triangle PAB=a:b:c$$가 됩니다. 이 글에서는 선분과 삼각형의 가중 무게 중심의 위치를 찾는 법과 가중 무게 중심의 위치 벡터, 삼각형의 넓이비에 대해서 알아보겠습니다.

(more…)

중학교 수학만으로 증명하는 점-직선사이의 거리

점과 직선사이의 거리를 구하는 공식은 다음과 같습니다.

점\(\mathrm{P}(x_0,y_0)\)부터 직선 \(l\):\(ax+by+c=0\)까지의 거리$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$

점과 직선사이의 거리 공식은 고등학교 교과 과정에서 배우는 것이지만 중학교 교과 과정에서 배우는 기본적인 도구만을 사용하여 이 공식을 증명할 수 있습니다. 이 글에서는 중학교 교과 과정의 수학만을 사용하여 점과 직선사이의 거리 공식을 증명합니다.

(more…)

소소하지만 확실한 테크닉 – 삼각함수 근사를 이용한 극한의 계산

  \(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.

\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$

이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다.

(more…)

그래프의 확대 및 축소 변환

\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$

\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$

그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.

(more…)