삼각형의 세 변의 길이를 \(a,b,c\)라고 하면, 세 변의 길이 관계에서 만들어지는 삼각부등식의 완전형은 다음과 같습니다.
$$|b-c|<a<b+c$$
이 글에서는 이 식의 증명과 의미를 살펴보고 활용 방법을 알아봅니다. (more…)삼각형의 세 변의 길이를 \(a,b,c\)라고 하면, 세 변의 길이 관계에서 만들어지는 삼각부등식의 완전형은 다음과 같습니다.
$$|b-c|<a<b+c$$
이 글에서는 이 식의 증명과 의미를 살펴보고 활용 방법을 알아봅니다. (more…)점 \(\mathrm{A}(a,b)\)를 원점 \(\mathrm{O}\)를 중심으로 반시계방향으로 \(90^\circ\) (또는 \(+90^\circ\)) 회전 이동한 점 \(\mathrm{A^\prime}\)과 시계 방향으로 \(90^\circ\) (또는 \(-90^\circ\)) 회전 이동한 점 \(\mathrm{A^{\prime\prime}}\)의 좌표는 각각 다음과 같습니다. $$\begin{align}&\mathrm{A}(a,b)\xrightarrow{+90^\circ회전}\mathrm{A’}(-b,a)\\
&\mathrm{A}(a,b)\xrightarrow{-90^\circ회전}\mathrm{A^{\prime\prime}}(b,-a)\end{align}$$