소소하지만 확실한 테크닉 -벡터의 90° 회전이동 (2010학년도 수능 가형 14번)

원점을 중심으로 [어떤 점을 원점을 중심으로 \(\pm 90^\circ\) 회전이동]하는 것과 같은 방법으로 평면 벡터를 \(\pm 90^\circ\) 회전이동한 결과도 간단히 표현할 수 있습니다.

평면 벡터 \(\overrightarrow{p}=(a,b)\)에 대해

$$\begin{align}&(a,b)\xrightarrow{+90^\circ회전}(-b,a)\\
&(a,b)\xrightarrow{-90^\circ회전}(b,-a)\end{align}$$

2010학년도 가형 14번 문제는 이러한 벡터의 회전이동을 어떻게 이용할 수 있는지 잘 보여주는 문제입니다. 보조선을 이용한 해법이 많이 알려져있지만, 벡터의 회전 이동을 이용하면 보조선 없이 짧은 계산만으로 문제가 요구하는 것을 찾아낼 수 있습니다.

(more…)

메넬라우스의 정리 사용 설명서

$$\mathrm{\frac{AP}{PB}\cdot\frac{QC}{BQ}\cdot\frac{RA}{CR}}=1$$

메넬라우스의 정리는 그 증명을 이해해도 사용하는 방법을 잘 익혀두지 않으면 실제로 문제를 풀 때 능숙하게 쓰기 어려운 정리입니다. 하지만 일단 사용 방법을 익혀두면 답을 구하는데 아주 편리하게 사용할 수 있는 정리이기도 합니다. 이 글에서는 평면 벡터와 같은 문제에서 메넬라우스의 정리를 잘 쓸 수 있는 방법에 대해 살펴봅니다.

(more…)

사차함수의 대칭성 II – 이중접선과 그래프의 비율 관계

사차함수 그래프의 대칭성과 \(1:\sqrt{2}\) 법칙 를 확장하면, 사차함수 그래프의 두 변곡점을 지나는 직선 \(l\)에 대해 다음과 같은 대칭성과 비율 관계를 확인할 수 있습니다.

사차함수의 이중접선과 평행하고 한점에서 접하는 직선, 변곡점을 지나는 직선, 이중접선을 각각 \(l_1\), \(l_2\), \(l_3\)라 할 때,

[관계1]. \(l_1\parallel l_2 \parallel l_3\)
[관계2]. \(l_1\)과 \(l_2\)사이의 거리:\(l_2\)와 \(l_3\)사이의 거리=\(5:4\)
[관계3]. 선분 \(\mathrm{HI}\)과 \(\mathrm{JK}\)의 중점은 일치한다.
[관계4]. 세 점 \(\mathrm{E}\), \(\mathrm{G}\), \(\mathrm{F}\)는 한 직선 위에 있고, \(x\)축과 직교한다.
[관계5]. \(\mathrm{HI}:\mathrm{JK}:\mathrm{AB}:\mathrm{CD}=1:\sqrt{5}:\sqrt{3}:\sqrt{6}\)

(more…)

전설의 수학 문제를 찾아서 – tan1°의 정체 (2006, 교토)

전설의 수학 문제를 찾아서, 7번째 문제는 \(\tan1^\circ\)의 정체입니다. 이 문제는 여러 개의 기본적인 수학 개념을 조합하여 어떻게 좋은 문제를 만들 수 있는지를 아주 잘 보여주는 문제입니다. 문제의 길이는 아주 짧지만 그 여운은 아주 강렬했던 문제입니다. 실제로 이 문제는 수험생들 중 일부만 풀 수 있었던 것으로 알려져 있습니다. 그 이유는 과연 무엇이었을까요? 이 문제를 풀기 위해 필요한 기본 개념들은 무엇일까요?

\(\tan1^\circ\)는 유리수인가? 무리수인가?

(more…)

문제로 이해하는 삼차함수 – f(x)를 f'(x)로 나눈 나머지 (1989, 교토)

\(f(x)\)는 \(x\)의 삼차 다항식이다. \(f(x)\)를 \(f(x)\)의 도함수 \(f'(x)\)로 나눈 나머지가 상수이면, 방정식 $$f(x)=0$$을 만족하는 실근은 1개임을 증명하시오.

이 문제는 삼차함수의 흥미로운 성질을 잘 보여주고 있는 문제입니다. 이 문제는 삼차함수의 어떤 성질을 이용하여 만들어진 문제일까요? 과연 \(f(x)\)를 \(f'(x)\)로 나눈 나머지의 의미는 무엇일까요?

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 미분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$

입니다. 이 글에서는 역삼각함수의 도함수를 구하는 방법과 그 원리를 설명합니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 미분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$

입니다. 이 글에서는 역삼각함수의 도함수를 구하는 방법과 그 원리를 설명합니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 적분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$

입니다. 이 글에서는 역함수 치환적분의 원리를 설명하고, 이를 이용해서 역삼각함수의 적분을 증명해 보겠습니다.

(more…)

소소하지만 확실한 테크닉 – 삼각함수 근사를 이용한 극한의 계산

  \(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.

\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$

이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다.

(more…)

부분적분을 빠르게 – 삼각함수×지수함수의 테이블 적분법

이 글에서는 삼각함수×지수함수의 테이블 적분법에 대해 설명합니다. 예를 들어, $$\int \sin x\cdot e^x dx$$의 테이블 적분은 다음과 같습니다. $$\begin{array}{ccc} D && I\\
\hline
\sin x&{}&e^x\\
{}&\searrow{+}&{}\\
\cos x&{}&e^x\\
{}&\searrow{-}&{}\\
-\sin x&\bbox[yellow]{\rightarrow{+}}&e^x\\
\end{array}$$$$\int \sin x\cdot e^xdx=+(\sin x\cdot e^x)-(\cos x\cdot e^x)+\bbox[yellow]{\int(-\sin x)\cdot e^x dx}$$

(more…)

그래프의 확대 및 축소 변환

\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$

\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$

그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.

(more…)

소소하지만 확실한 테크닉 – 90도 회전이동

점 \(\mathrm{A}(a,b)\)를 원점 \(\mathrm{O}\)를 중심으로 반시계방향으로 \(90^\circ\) (또는 \(+90^\circ\)) 회전 이동한 점 \(\mathrm{A^\prime}\)과 시계 방향으로 \(90^\circ\) (또는 \(-90^\circ\)) 회전 이동한 점  \(\mathrm{A^{\prime\prime}}\)의 좌표는 각각 다음과 같습니다. $$\begin{align}&\mathrm{A}(a,b)\xrightarrow{+90^\circ회전}\mathrm{A’}(-b,a)\\
&\mathrm{A}(a,b)\xrightarrow{-90^\circ회전}\mathrm{A^{\prime\prime}}(b,-a)\end{align}$$

이 글에서는 원점을 중심으로 하는 90° 회전 이동의 결과를 증명하고 활용방법에 대해서 이야기 합니다. (more…)

사차함수 그래프의 대칭성과 \(1:\sqrt{2}\) 법칙

이중접선을 갖는 사차함수의 그래프는 다음과 같은 비율 관계를 갖고 있습니다.

사차함수의 그래프와 이중접선이 두 점 \(\mathrm{A}\), \(\mathrm{B}\)에서 접하고, 선분\(\mathrm{AB}\)의 중점을 \(\mathrm{F}\), 이중접선과 평행한 직선이 사차함수의 그래프와 점\(\mathrm{E}\)에서 접하고 \(\mathrm{C}\), \(\mathrm{D}\)에서 만날 때,

[관계①]. 점\(\mathrm{E}\)의 \(x\)좌표=점\(\mathrm{F}\)의 \(x\)좌표
[관계②]. \(\mathrm{AF}:\mathrm{FB}:\mathrm{CE}:\mathrm{ED}=1:1:\sqrt{2}:\sqrt{2}\)

(more…)