이항분포 \(\mathrm{B}(n,p)\)를 따르는 확률변수 \(X\)의 평균과 분산은 다음과 같습니다.
평균 \(\mathrm{E}(X)=np\)
분산 \(\mathrm{V}(X)=npq,\ q=1-p\)
이 글에서는 이항계수의 흡수 항등식과 소소하지만 확실한 테크닉 1개만을 사용하여 이 결과를 증명해 보겠습니다. (2017학년도 서울시립대 논술 2번) (more…)
이항분포 \(\mathrm{B}(n,p)\)를 따르는 확률변수 \(X\)의 평균과 분산은 다음과 같습니다.
평균 \(\mathrm{E}(X)=np\)
분산 \(\mathrm{V}(X)=npq,\ q=1-p\)
이 글에서는 이항계수의 흡수 항등식과 소소하지만 확실한 테크닉 1개만을 사용하여 이 결과를 증명해 보겠습니다. (2017학년도 서울시립대 논술 2번) (more…)
이항계수의 흡수 항등식 (absorption identity)는 약방의 감초처럼 이항계수를 사용하는 수식에서 자주 쓰이는 항등식입니다. 이 항등식을 직접 설명하고 있는 교과서는 없지만, 사실 이 항등식은 평가원 기출문제에서 종종 사용될 정도로 중요한 항등식입니다.
자연수 \(r(1\leq r \leq k)\)에 대하여$$_kC_r=\frac{k}{r}\times _{k-1}C_{r-1}$$
이 글에서는 이 항등식을 증명하고, 이 항등식을 활용하는 방법과 과거 평가원 기출문제에서 이 항등식이 어떻게 다루었는지에 대해 이야기 해보겠습니다. (more…)
이차곡선 문제를 풀 때 사용할 수 있는 핵심 전략은 다음과 같습니다.
● 타원의 정의를 이용할 수 있는 보조선 그리기
● 동일한 구조의 식에서 방정식 추론하기 (주어진 식을 보고 사용할 식을 결정)
● 근과 계수의 관계
● 중점 연결 정리(타원, 쌍곡선)
이 글에서는 다음 문제의 풀이를 통해서 이러한 핵심 전략을 문제에서 어떻게 사용할 수 있는지 알아보겠습니다.
두점 \(\mathrm F(5,0)\), \(\mathrm F'(-5,0)\)을 초점으로 하는 타원 위의 서로 다른 두 점 \(\mathrm P\), \(\mathrm Q\)에 대하여 원점 \(\mathrm O\)에서 선분 \(\mathrm{PF}\)와 선분 \(\mathrm{QF’}\)에 내린 수선의 발을 각각 \(\mathrm H\)와 \(\mathrm I\)라 하자. 점 \(\mathrm H\)와 \(\mathrm I\)가 각각 선분 \(\mathrm{PF}\)와 선분 \(\mathrm{QF’}\)의 중점이고, \(\mathrm{\overline{OH}\times\overline{OI}=10}\)일 때, 이 타원의 장축의 길이를 \(l\)이라 하자. \(l^2\)의 값을 구하시오. (단, \(\mathrm{\overline{OH}\neq\overline{OI}}\))
가끔은 아주 어려워 보이는 문제가 단순한 테크닉의 조합만으로 쉽게 풀리는 경우가 있습니다. 2018학년도 수능 나형 30번이 그러한 경우입니다. 이 문제를 풀기 위해서 필요한 것은 [소소하지만 확실한 테크닉] 2개와 (조금 길긴 하지만) 단순한 계산 뿐입니다.
(가) \(0\leq x\lt 1\) 일 때, \(g(x)=f(x)\) 이다.
(나) \(n\leq x \lt n+1\) 일 때, $$g(x)=\frac{1}{2^n}\{f(x-n)-(x-n)\}+x$$이다. (단, \(n\)은 자연수이다.)
어떤 자연수 \(k(k\geq 6)\)에 대하여 함수 \(h(x)\)는 $$h(x)=
\begin{cases}
g(x) & \text{($0\leq x \lt 5$ 또는 $x\geq k$)}\\
2x-g(x) & \text{($5\leq x \lt k$)}
\end{cases}$$이다. 수열 \(\{a_n\}\)을 \(a_n=\displaystyle\int_0^nh(x)dx\) 라 할 때, $$\lim\limits_{n\to\infty}(2a_n-n^2)=\frac{241}{768}$$이다. \(k\)의 값을 구하시오.
\(\alpha\)가 정수이고, \(n\)이 자연수 일때,
$$\int_{\alpha}^{\alpha+n}f(x)dx\to\sum_{k=1}^{n}a_k$$$$a_k=\int_{\alpha+k-1}^{\alpha+k}f(x)dx$$
이 글에서는 이 테크닉의 원리와 활용에 대해 이야기 합니다.대칭식과 교대식은 다음과 같은 관계를 가지고 있습니다.
(1) 대칭식×대칭식=대칭식
(2) 교대식×대칭식=교대식
(3) 교대식×교대식=대칭식
이 글에서는 이 관계를 증명하고, 이 사실을 이용한 인수분해에 대해서 이야기합니다.
3변수 교대식은 3개의 문자중에서 어떤 2문자를 바꾸어 대입하여 계산하더라도 원래의 식과 그 부호가 반대로 되는 식입니다. 즉 3문자 교대식 \(f(x,y,z)\)는 다음과 같은 성질을 만족합니다. $$\begin{align}f(x,y,z)&=-f(y,x,z)\\&=-f(x,z,y)\\&=-f(z,y,x)\end{align}$$ 3변수 교대식의 인수분해는 다음과 같은 교대식의 중요한 성질을 이용합니다.
3변수 교대식$$f(x,y,z)=(x-y)(y-z)(z-x)\cdot g(x,y,z)$$로 인수분해가 되고, 이때 \(g(x,y,z)\)는 대칭식이 된다.
이 글에서는 이 사실을 증명하고, 교대식의 성질을 이용한 인수분해 문제를 예를 들어 설명하겠습니다.3변수 교대식은 3개의 문자중에서 어떤 2문자를 바꾸어 대입하여 계산하더라도 원래의 식과 그 부호가 반대로 되는 식입니다. 즉 3문자 교대식 \(f(x,y,z)\)는 다음과 같은 성질을 만족합니다. $$\begin{align}f(x,y,z)&=-f(y,x,z)\\&=-f(x,z,y)\\&=-f(z,y,x)\end{align}$$ 3변수 교대식의 인수분해는 다음과 같은 교대식의 중요한 성질을 이용합니다.
3변수 교대식$$f(x,y,z)=(x-y)(y-z)(z-x)\cdot g(x,y,z)$$로 인수분해가 되고, 이때 \(g(x,y,z)\)는 대칭식이 된다.
이 글에서는 이 사실을 증명하고, 교대식의 성질을 이용한 인수분해 문제를 예를 들어 설명하겠습니다.3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고, x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는
$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$
이 글에서는 이 식의 간단한 증명을 소개합니다.
함수 \(f(x)\)와 \(f(x)\)의 역함수 \(g(x)\)의 그래프가 모두 \((a,b)\)를 지날 때, 다음 문장은 참일까요? 거짓일까요?
[진실?/거짓?] 함수 \(f(x)\)와 역함수 \(g(x)\)의 모든 교점 \((a,b)\)는 직선 \(y=x\)위에 있다.
이 글에서는 함수와 역함수의 교점에 대해 흔히 빠질 수 있는 논리 함정에 대해 이야기 하고, 함수와 역함수의 교점에 대한 중요한 몇가지 성질들에 대해 이야기 합니다. (more…)
좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.
이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.
이차함수와 두 접선으로 둘러 싸인 넓이는 $$\mathcal{A}=\frac{|a|}{12}|\beta-\alpha|^3$$ 입니다. 이 공식에 대한 증명을 설명합니다.
베이즈 정리란 사후 확률 (posterior probability) 을 사전 확률 (prior probability) 를 이용하여 표현하는 방법으로 수학적으로 다음과 같이 표현합니다.
사건 B가 먼저 일어난 후 사건 A가 일어날 때, $$P(B|A)=\frac{P(A|B)\cdot P(B)}{P(A)}$$$$\begin{aligned}P(B|A)&\text{ : 사후 확률, 나중에 일어나는 사건 A를 전제로 하는 조건부 확률}\\
P(B)&\text{ : 사전 확률, 사건 A가 일어나기전 사건 B가 일어날 확률}\\
P(A|B)&\text{ : 사건 B가 일어난 후에 사건 A가 일어날 확률}\end{aligned}$$
이 글에서는 베이즈 정리를 직접 유도해보면서 사후 확률과 베이즈 정리의 의미와 목적에 대해 설명하고, 이 정리를 어떻게 활용할 수 있는지에 대해 이야기 해보겠습니다. (more…)
\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,
$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$
주제별로 글을 정리한 목록입니다. 아직 완전히 정리된 것은 아닙니다, 앞으로 글을 올리면서 목록이 길어지면 교과별로 나눌 예정입니다. 글 제목을 클릭하면 해당 글로 이동합니다.
삼차함수 \(y=ax^3+bx^2+cx+d\) 의 그래프는 다음과 같은 대칭성을 가지고 있습니다.
대칭성① : 삼차함수의 그래프는 변곡점 \(\left(-\dfrac{b}{3a}, f(-\dfrac{b}{3a})\right)\)에 대해 점대칭이다.
대칭성② : 삼차함수의 그래프는 합동인 \(8\)개의 평행사변형으로 분할할 수 있다.(\(4\)등분 법칙)
이 글에서는 삼차함수 그래프의 대칭성을 증명하고, 이 대칭성을 활용하는 법에 대해 이야기 합니다.