이항분포 B(n,p)의 평균 E(X)=np, 분산 V(X)=npq의 증명 (2017학년도 서울시립대 논술 2번)

이항분포 \(\mathrm{B}(n,p)\)를 따르는 확률변수 \(X\)의 평균과 분산은 다음과 같습니다.

평균 \(\mathrm{E}(X)=np\)
분산 \(\mathrm{V}(X)=npq,\ q=1-p\)

이 글에서는 이항계수의 흡수 항등식소소하지만 확실한 테크닉 1개만을 사용하여 이 결과를 증명해 보겠습니다. (2017학년도 서울시립대 논술 2번) (more…)

정답을 부르는 개념 – 이항계수의 흡수 항등식

이항계수의 흡수 항등식 (absorption identity)는 약방의 감초처럼 이항계수를 사용하는 수식에서 자주 쓰이는 항등식입니다. 이 항등식을 직접 설명하고 있는 교과서는 없지만, 사실 이 항등식은 평가원 기출문제에서 종종 사용될 정도로 중요한 항등식입니다.

자연수 \(r(1\leq r \leq k)\)에 대하여$$_kC_r=\frac{k}{r}\times _{k-1}C_{r-1}$$

이 글에서는 이 항등식을 증명하고, 이 항등식을 활용하는 방법과 과거 평가원 기출문제에서 이 항등식이 어떻게 다루었는지에 대해 이야기 해보겠습니다. (more…)

이차곡선 문제의 핵심 전략 (2) – 2013학년도 6월 모의고사 27번

이차곡선 문제를 풀 때 사용할 수 있는 핵심 전략은 다음과 같습니다.

● 타원의 정의를 이용할 수 있는 보조선 그리기
● 동일한 구조의 식에서 방정식 추론하기 (주어진 식을 보고 사용할 식을 결정)
● 근과 계수의 관계
● 중점 연결 정리(타원, 쌍곡선)

이 글에서는 다음 문제의 풀이를 통해서 이러한 핵심 전략을 문제에서 어떻게 사용할 수 있는지 알아보겠습니다.

2013학년도 6월 모의고사 가형 27번

두점 \(\mathrm F(5,0)\), \(\mathrm F'(-5,0)\)을 초점으로 하는 타원 위의 서로 다른 두 점 \(\mathrm P\), \(\mathrm Q\)에 대하여 원점 \(\mathrm O\)에서 선분 \(\mathrm{PF}\)와 선분 \(\mathrm{QF’}\)에 내린 수선의 발을 각각 \(\mathrm H\)와 \(\mathrm I\)라 하자. 점 \(\mathrm H\)와 \(\mathrm I\)가 각각 선분 \(\mathrm{PF}\)와 선분 \(\mathrm{QF’}\)의 중점이고, \(\mathrm{\overline{OH}\times\overline{OI}=10}\)일 때, 이 타원의 장축의 길이를 \(l\)이라 하자. \(l^2\)의 값을 구하시오. (단, \(\mathrm{\overline{OH}\neq\overline{OI}}\))

(more…)

소확테 2개의 환상의 콜레보 – 2018학년도 수능 나형 30번

가끔은 아주 어려워 보이는 문제가 단순한 테크닉의 조합만으로 쉽게 풀리는 경우가 있습니다. 2018학년도 수능 나형 30번이 그러한 경우입니다. 이 문제를 풀기 위해서 필요한 것은 [소소하지만 확실한 테크닉] 2개와 (조금 길긴 하지만) 단순한 계산 뿐입니다.

2018학년도 수능 나형 30번

이차함수 \(f(x)=\dfrac{3x-x^2}{2}\) 에 대하여 구간 \([0,\infty)\) 에서 정의된 함수 \(g(x)\) 가 다음 조건을 만족시킨다.

(가) \(0\leq x\lt 1\) 일 때, \(g(x)=f(x)\) 이다.
(나) \(n\leq x \lt n+1\) 일 때, $$g(x)=\frac{1}{2^n}\{f(x-n)-(x-n)\}+x$$이다. (단, \(n\)은 자연수이다.)

어떤 자연수 \(k(k\geq 6)\)에 대하여 함수 \(h(x)\)는 $$h(x)=
\begin{cases}
g(x) & \text{($0\leq x \lt 5$ 또는 $x\geq k$)}\\
2x-g(x) & \text{($5\leq x \lt k$)}
\end{cases}$$이다. 수열 \(\{a_n\}\)을 \(a_n=\displaystyle\int_0^nh(x)dx\) 라 할 때, $$\lim\limits_{n\to\infty}(2a_n-n^2)=\frac{241}{768}$$이다. \(k\)의 값을 구하시오.

(more…)

3변수 교대식의 성질과 인수분해

3변수 교대식은 3개의 문자중에서 어떤 2문자를 바꾸어 대입하여 계산하더라도 원래의 식과 그 부호가 반대로 되는 식입니다. 즉 3문자 교대식 \(f(x,y,z)\)는 다음과 같은 성질을 만족합니다. $$\begin{align}f(x,y,z)&=-f(y,x,z)\\&=-f(x,z,y)\\&=-f(z,y,x)\end{align}$$ 3변수 교대식의 인수분해는 다음과 같은 교대식의 중요한 성질을 이용합니다.

3변수 교대식$$f(x,y,z)=(x-y)(y-z)(z-x)\cdot g(x,y,z)$$로 인수분해가 되고, 이때 \(g(x,y,z)\)는 대칭식이 된다.

이 글에서는 이 사실을 증명하고, 교대식의 성질을 이용한 인수분해 문제를 예를 들어 설명하겠습니다.

(more…)

그래프의 확대 및 축소 변환

\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$

\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$

그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.

(more…)

소소하지만 확실한 테크닉 – 삼각함수 근사를 이용한 극한의 계산

  \(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.

\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$

이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다.

(more…)

사차함수의 이중접선과 변곡점의 관계

이중접선을 갖는 사차함수의 그래프는 어떤 특징을 갖고 있을까요? 놀랍게도 변곡점을 갖는 모든 사차함수는 이중접선을 갖고 있습니다. 반대로 이중접선을 갖는 사차함수는 변곡점을 갖고 있습니다. 즉, 사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\) \((a\ne 0)\)의 그래프가 이중접선을 가질 조건은 함수 \(f(x)\)의 그래프가 변곡점을 가질 조건과 같습니다. 즉, 

$$\begin{align}&\text{변곡점을 갖는 사차함수}\\
&\Leftrightarrow\text{이중접선을 갖는 사차함수}\end{align}$$

이고, \(f(x)\)의 그래프가 이중접선을 갖기 위한 조건은

$$3b^2-8ac>0$$

입니다. 그리고 이 때, 이중접선의 방정식은

$$y=\left(\frac{b(b^2-4ac)}{8a^2}+d\right)x-\frac{(b^2-4ac)^2}{64a^3}+e$$

입니다. 이 글에서는 이 조건을 증명하고, 이중접선의 방정식을 유도합니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

가중 무게 중심 위치와 넓이비 (비법공식)

$$a\overrightarrow{PA}+b\overrightarrow{PB}+c\overrightarrow{PC}=\overrightarrow{0}$$ 가 성립할 때 점 \(P\)를 \(\triangle{ABC}\)의 가중 무게 중심이라고 합니다.  또한  $$\triangle PBC:\triangle PCA:\triangle PAB=a:b:c$$가 됩니다. 이 글에서는 선분과 삼각형의 가중 무게 중심의 위치를 찾는 법과 가중 무게 중심의 위치 벡터, 삼각형의 넓이비에 대해서 알아보겠습니다.

(more…)

조립제법의 원리 – 나눗셈의 귀납적 관계

조립제법이란 다항식을 일차식으로 나눈 몫과 나머지를 곱셈과 덧셈만을 반복하여  빠르게 구하는 방법입니다. 다항식을 일차식으로 나누면 특별한 귀납적 관계를 발견할 수 있습니다. 이 귀납적 관계를 핵심원리로 삼아 만들어진 방법이 바로 조립제법입니다. 이 글에서는 일차식의 나눗셈이 가지고 있는 귀납적 관계를 살펴보고 조립제법이 어떻게 이 원리를 사용하고 있는지 알아보겠습니다.

(more…)