\(t=\tan x\)로 치환하면,
$$\int\frac{1}{1+x^2}dx \to \int dt$$
가 되어 적분하려는 함수가 상수 1이 되어 적분이 아주 간단해 집니다. 이렇게 삼각치환을 하면 적분하려는 함수가 간단해 지는 이유는 무엇일까요? 왜 꼭 굳이 \(t=\tan x\) 로 치환하는 이유는 무엇일까요?이 글에서는 삼각치환의 비밀과 그 뒤에 있는 수학적 배경에 대해 이야기 합니다. (more…)
\(t=\tan x\)로 치환하면,
$$\int\frac{1}{1+x^2}dx \to \int dt$$
가 되어 적분하려는 함수가 상수 1이 되어 적분이 아주 간단해 집니다. 이렇게 삼각치환을 하면 적분하려는 함수가 간단해 지는 이유는 무엇일까요? 왜 꼭 굳이 \(t=\tan x\) 로 치환하는 이유는 무엇일까요?이 글에서는 삼각치환의 비밀과 그 뒤에 있는 수학적 배경에 대해 이야기 합니다. (more…)
e 3변수 대칭식이란 3개의 문자를 사용하는 식 \(f(x,y,z)\) 에서 3개의 문자중 어떠한 2개를 바꾸어 대입하여 계산하여도 그 결과가 원래의 식과 동일한 식입니다. 즉 3변수 대칭식 \(f(x,y,z)\)는 다음과 같은 성질을 만족해야 합니다.$$\begin{align}f(x,y,z)&=f(y,x,z)\\&=f(x,z,y)\\&=f(z,y,x)\end{align}$$ 3변수 대칭식의 인수분해는 다음과 같은 중요한 사실을 이용하는 경우가 많습니다.
3변수 대칭식 \(f(x,y,z)\) 에서 \(x\) 자리에 \(-y\) 를 대입하여 계산한 결과가 0이 되면, 식 \(f(x,y,z)\)는 $$(x+y)(y+z)(z+x)$$를 인수로 갖는다. 즉, $$f(-y,y,z)=0\implies f(x,y,z)=(x+y)(y+z)(z+x)\cdot g(x,y,z) $$ 또한 이 때, \(g(x,y,z)\) 는 대칭식이다.
이 글에서는 이 사실을 증명하고, 이것을 이용한 인수분해 문제를 풀어보겠습니다. (more…)
대부분의 삼각함수의 극한 문제는 삼각함수를 다음과 같이 근사하여 풀 수 있습니다. $$\sin x\approx x,\ \tan x\approx x,\ 1-\cos x\approx\frac{x^2}{2}$$ 하지만 이 근사만으로는 풀 수 없는 문제가 종종 출제 되곤 합니다. 2010년 6월 모의고사 가형 27번이 바로 그러한 경우입니다.
[2010학년도 6월 가형 27번]
$$\lim\limits_{x \to 0}{\frac{e^{1-\sin{x}}-e^{1-\tan{x}}}{\tan{x}-\sin{x}}}$$의 값은?
이 문제를 기존의 근사법으로 풀 수 없는 이유는 무엇일까요? 그리고 이 문제를 풀기 위해서 \(\tan x\) 와 \(\sin x\)를 어떻게 근사하면 좋을까요? (more…)
$$f(x,y)=f(y,x)$$ 와 같이 두 변수 \(x\) 와 \(y\)를 서로 교환해도 식의 값이 변하지 않는 식을 대칭식이라고 합니다. \(x^n+y^n\)은 대표적인 2변수 대칭식 중 하나로, 그 값을 구하는 문제가 자주 출제 됩니다. 이 식의 값은 다음과 같은 귀납적 관계(점화식)을 이용하면 그 값을 고속으로 계산할 수 있습니다.
$$x^{n+2}+y^{n+2}=(x+y)(x^{n+1}+y^{n+1})-xy(x^n+y^n), n\ge 1\qquad(1)$$
이 글에서는 이 점화식을 사용한 \(x^n+y^n\)의 계산법과 그 응용을 설명합니다. (more…)
\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,
$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$
전설의 수학 문제를 찾아서, 4번째 문제는 공통근 문제입니다. 1971년 동경대 입시 문제로 출제된 이 문제는 공통근에 대한 우리의 고정관념을 멋지게 뒤집는 문제입니다.
실수 \(a,\ b\) 에 대하여, 두 이차방정식 $$x^2+ax+b=0,\ ax^2+bx+1=0$$이 있다.
(1) 두 이차방정식이 실수근 \(\lambda\)를 공통으로 가질 때 \(\lambda\)의 값과 \(a+b\)의 값을 구하시오.
(2) 두 이차방정식이 허근을 공통근으로 가질 때 \(a,\ b\)의 값을 구하시오.
이 문제에는 어떠한 함정이 숨겨져 있을까요? 이 함정을 해결할 수 있는 방법은 무엇일까요? 그리고 이 문제의 배경에는 어떠한 수학적 원리가 숨어있을까요? (more…)
\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,
$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$
3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고, x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는
$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$
이 글에서는 이 식의 간단한 증명을 소개합니다.
좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.
이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.
$$a\overrightarrow{PA}+b\overrightarrow{PB}+c\overrightarrow{PC}=\overrightarrow{0}$$ 가 성립할 때 점 \(P\)를 \(\triangle{ABC}\)의 가중 무게 중심이라고 합니다. 또한 $$\triangle PBC:\triangle PCA:\triangle PAB=a:b:c$$가 됩니다. 이 글에서는 선분과 삼각형의 가중 무게 중심의 위치를 찾는 법과 가중 무게 중심의 위치 벡터, 삼각형의 넓이비에 대해서 알아보겠습니다.
이 글에서는 \(\sec x \)와 \(\csc x\)의 3가지 적분 방법을 설명합니다. 세 방법 모두 다음 적분을 기본으로 사용하고 있습니다.
$$\int \frac{f'(x)}{f(x)}dx=\ln|f(x)| + C$$
이차함수와 두 접선으로 둘러 싸인 넓이는 $$\mathcal{A}=\frac{|a|}{12}|\beta-\alpha|^3$$ 입니다. 이 공식에 대한 증명을 설명합니다.
점과 직선사이의 거리를 구하는 공식은 다음과 같습니다.
점\(\mathrm{P}(x_0,y_0)\)부터 직선 \(l\):\(ax+by+c=0\)까지의 거리$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$
점과 직선사이의 거리 공식은 고등학교 교과 과정에서 배우는 것이지만 중학교 교과 과정에서 배우는 기본적인 도구만을 사용하여 이 공식을 증명할 수 있습니다. 이 글에서는 중학교 교과 과정의 수학만을 사용하여 점과 직선사이의 거리 공식을 증명합니다.
이차함수 \(y=ax^2+bx+c\) 의 두 접점 \((\alpha, f(\alpha)\), \((\beta, f(\beta))\) 에서 그은 두 접선이 만나는 점의 좌표는 $$\left(\frac{\alpha+\beta}{2}, a\alpha\beta+b\left(\frac{\alpha+\beta}{2}\right)+c\right)$$ 이다. 특히 이 교점의 x좌표는 a와 관계없이 두 접점을 연결한 선분의 중점이 갖는 x좌표와 같다.
\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$
\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$
그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.
\(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.
\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$
이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다.