삼각치환의 비밀

\(t=\tan x\)로 치환하면,

$$\int\frac{1}{1+x^2}dx \to \int dt$$

가 되어 적분하려는 함수가 상수 1이 되어 적분이 아주 간단해 집니다. 이렇게 삼각치환을 하면 적분하려는 함수가 간단해 지는 이유는 무엇일까요? 왜 꼭 굳이 \(t=\tan x\) 로 치환하는 이유는 무엇일까요?

이 글에서는 삼각치환의 비밀과 그 뒤에 있는 수학적 배경에 대해 이야기 합니다. (more…)

3변수 대칭식의 인수분해

e 3변수 대칭식이란 3개의 문자를 사용하는 식 \(f(x,y,z)\) 에서 3개의 문자중 어떠한 2개를 바꾸어 대입하여 계산하여도 그 결과가 원래의 식과 동일한 식입니다. 즉 3변수 대칭식 \(f(x,y,z)\)는 다음과 같은 성질을 만족해야 합니다.$$\begin{align}f(x,y,z)&=f(y,x,z)\\&=f(x,z,y)\\&=f(z,y,x)\end{align}$$ 3변수 대칭식의 인수분해는 다음과 같은 중요한 사실을 이용하는 경우가 많습니다.

3변수 대칭식 \(f(x,y,z)\) 에서 \(x\) 자리에 \(-y\) 를 대입하여 계산한 결과가 0이 되면,  식 \(f(x,y,z)\)는 $$(x+y)(y+z)(z+x)$$를 인수로 갖는다. 즉, $$f(-y,y,z)=0\implies f(x,y,z)=(x+y)(y+z)(z+x)\cdot g(x,y,z) $$ 또한 이 때, \(g(x,y,z)\) 는 대칭식이다.

이 글에서는 이 사실을 증명하고, 이것을 이용한 인수분해 문제를 풀어보겠습니다. (more…)

소소하지만 확실한 테크닉 – (tanx-sinx)의 근사화 (2010년 6월 모의고사 가형 27번)

대부분의 삼각함수의 극한 문제는 삼각함수를 다음과 같이 근사하여 풀 수 있습니다.  $$\sin x\approx x,\ \tan x\approx x,\ 1-\cos x\approx\frac{x^2}{2}$$ 하지만 이 근사만으로는 풀 수 없는 문제가 종종 출제 되곤 합니다. 2010년 6월 모의고사 가형 27번이 바로 그러한 경우입니다.

[2010학년도 6월 가형 27번]
$$\lim\limits_{x \to 0}{\frac{e^{1-\sin{x}}-e^{1-\tan{x}}}{\tan{x}-\sin{x}}}$$의 값은?

이 문제를 기존의 근사법으로 풀 수 없는 이유는 무엇일까요? 그리고 이 문제를 풀기 위해서 \(\tan x\) 와 \(\sin x\)를 어떻게 근사하면 좋을까요? (more…)

2변수 대칭식의 고속계산

$$f(x,y)=f(y,x)$$ 와 같이 두 변수 \(x\) 와 \(y\)를 서로 교환해도 식의 값이 변하지 않는 식을 대칭식이라고 합니다. \(x^n+y^n\)은 대표적인 2변수 대칭식 중 하나로, 그 값을 구하는 문제가 자주 출제 됩니다. 이 식의 값은 다음과 같은 귀납적 관계(점화식)을 이용하면 그 값을 고속으로 계산할 수 있습니다.

$$x^{n+2}+y^{n+2}=(x+y)(x^{n+1}+y^{n+1})-xy(x^n+y^n), n\ge 1\qquad(1)$$

이 글에서는 이 점화식을 사용한 \(x^n+y^n\)의 계산법과 그 응용을 설명합니다. (more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 미분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$

입니다. 이 글에서는 역삼각함수의 도함수를 구하는 방법과 그 원리를 설명합니다.

(more…)

전설의 수학 문제를 찾아서 – 공통근의 함정, 그리고 종결식 (1971, 동경대)

전설의 수학 문제를 찾아서, 4번째 문제는 공통근 문제입니다. 1971년 동경대 입시 문제로 출제된 이 문제는 공통근에 대한 우리의 고정관념을 멋지게 뒤집는 문제입니다.

실수 \(a,\ b\) 에 대하여, 두 이차방정식 $$x^2+ax+b=0,\ ax^2+bx+1=0$$이 있다.
(1) 두 이차방정식이 실수근 \(\lambda\)를 공통으로 가질 때 \(\lambda\)의 값과 \(a+b\)의 값을 구하시오.
(2) 두 이차방정식이 허근을 공통근으로 가질 때 \(a,\ b\)의 값을 구하시오.

이 문제에는 어떠한 함정이 숨겨져 있을까요? 이 함정을 해결할 수 있는 방법은 무엇일까요? 그리고 이 문제의 배경에는 어떠한 수학적 원리가 숨어있을까요? (more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 적분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$

입니다. 이 글에서는 역함수 치환적분의 원리를 설명하고, 이를 이용해서 역삼각함수의 적분을 증명해 보겠습니다.

(more…)

그래프의 확대 및 축소 변환

\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$

\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$

그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.

(more…)

소소하지만 확실한 테크닉 – 삼각함수 근사를 이용한 극한의 계산

  \(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.

\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$

이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다.

(more…)

사차함수의 이중접선과 변곡점의 관계

이중접선을 갖는 사차함수의 그래프는 어떤 특징을 갖고 있을까요? 놀랍게도 변곡점을 갖는 모든 사차함수는 이중접선을 갖고 있습니다. 반대로 이중접선을 갖는 사차함수는 변곡점을 갖고 있습니다. 즉, 사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\) \((a\ne 0)\)의 그래프가 이중접선을 가질 조건은 함수 \(f(x)\)의 그래프가 변곡점을 가질 조건과 같습니다. 즉, 

$$\begin{align}&\text{변곡점을 갖는 사차함수}\\
&\Leftrightarrow\text{이중접선을 갖는 사차함수}\end{align}$$

이고, \(f(x)\)의 그래프가 이중접선을 갖기 위한 조건은

$$3b^2-8ac>0$$

입니다. 그리고 이 때, 이중접선의 방정식은

$$y=\left(\frac{b(b^2-4ac)}{8a^2}+d\right)x-\frac{(b^2-4ac)^2}{64a^3}+e$$

입니다. 이 글에서는 이 조건을 증명하고, 이중접선의 방정식을 유도합니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

가중 무게 중심 위치와 넓이비 (비법공식)

$$a\overrightarrow{PA}+b\overrightarrow{PB}+c\overrightarrow{PC}=\overrightarrow{0}$$ 가 성립할 때 점 \(P\)를 \(\triangle{ABC}\)의 가중 무게 중심이라고 합니다.  또한  $$\triangle PBC:\triangle PCA:\triangle PAB=a:b:c$$가 됩니다. 이 글에서는 선분과 삼각형의 가중 무게 중심의 위치를 찾는 법과 가중 무게 중심의 위치 벡터, 삼각형의 넓이비에 대해서 알아보겠습니다.

(more…)

조립제법의 원리 – 나눗셈의 귀납적 관계

조립제법이란 다항식을 일차식으로 나눈 몫과 나머지를 곱셈과 덧셈만을 반복하여  빠르게 구하는 방법입니다. 다항식을 일차식으로 나누면 특별한 귀납적 관계를 발견할 수 있습니다. 이 귀납적 관계를 핵심원리로 삼아 만들어진 방법이 바로 조립제법입니다. 이 글에서는 일차식의 나눗셈이 가지고 있는 귀납적 관계를 살펴보고 조립제법이 어떻게 이 원리를 사용하고 있는지 알아보겠습니다.

(more…)