대칭식과 교대식은 다음과 같은 관계를 가지고 있습니다.
(1) 대칭식×대칭식=대칭식
(2) 교대식×대칭식=교대식
(3) 교대식×교대식=대칭식
이 글에서는 이 관계를 증명하고, 이 사실을 이용한 인수분해에 대해서 이야기합니다.
대칭식과 교대식은 다음과 같은 관계를 가지고 있습니다.
(1) 대칭식×대칭식=대칭식
(2) 교대식×대칭식=교대식
(3) 교대식×교대식=대칭식
이 글에서는 이 관계를 증명하고, 이 사실을 이용한 인수분해에 대해서 이야기합니다.
e 3변수 대칭식이란 3개의 문자를 사용하는 식 \(f(x,y,z)\) 에서 3개의 문자중 어떠한 2개를 바꾸어 대입하여 계산하여도 그 결과가 원래의 식과 동일한 식입니다. 즉 3변수 대칭식 \(f(x,y,z)\)는 다음과 같은 성질을 만족해야 합니다.$$\begin{align}f(x,y,z)&=f(y,x,z)\\&=f(x,z,y)\\&=f(z,y,x)\end{align}$$ 3변수 대칭식의 인수분해는 다음과 같은 중요한 사실을 이용하는 경우가 많습니다.
3변수 대칭식 \(f(x,y,z)\) 에서 \(x\) 자리에 \(-y\) 를 대입하여 계산한 결과가 0이 되면, 식 \(f(x,y,z)\)는 $$(x+y)(y+z)(z+x)$$를 인수로 갖는다. 즉, $$f(-y,y,z)=0\implies f(x,y,z)=(x+y)(y+z)(z+x)\cdot g(x,y,z) $$ 또한 이 때, \(g(x,y,z)\) 는 대칭식이다.
이 글에서는 이 사실을 증명하고, 이것을 이용한 인수분해 문제를 풀어보겠습니다. (more…)
$$f(x,y)=f(y,x)$$ 와 같이 두 변수 \(x\) 와 \(y\)를 서로 교환해도 식의 값이 변하지 않는 식을 대칭식이라고 합니다. \(x^n+y^n\)은 대표적인 2변수 대칭식 중 하나로, 그 값을 구하는 문제가 자주 출제 됩니다. 이 식의 값은 다음과 같은 귀납적 관계(점화식)을 이용하면 그 값을 고속으로 계산할 수 있습니다.
$$x^{n+2}+y^{n+2}=(x+y)(x^{n+1}+y^{n+1})-xy(x^n+y^n), n\ge 1\qquad(1)$$
이 글에서는 이 점화식을 사용한 \(x^n+y^n\)의 계산법과 그 응용을 설명합니다. (more…)