특정한 조건을 만족하는 삼차방정식의 근의 개수 Ⅰ

문제를 풀다보면 특정한 조건을 만족하는 상황에서 삼차방정식 \(f(x)=0\)의 근의 개수를 구해야 할 때가 종종 있습니다. 삼차함수 \(f(x)\)와 도함수 \(f'(x)\), 두 실수 \(\alpha\)와 \(\beta\)에 대해, \(f'(\alpha)=f'(\beta)=0\)이면, 삼차방정식 \(f(x)=0\)의 근의 개수는 다음과 같은 방법으로 구할 수 있습니다.

$$\begin{array}{c|c} \text{조건} & \text{근의 개수}\\\hline
f(\alpha)f(\beta)>0 & \text{\(1\)개}\\\hline
f(\alpha)f(\beta)=0 & \begin{array} {c|c} \alpha=\beta & \text{\(1\)개}\\\hline \alpha \ne \beta & \text{\(2\) 개}\end{array} \\\hline
f(\alpha)f(\beta)<0 & \text{\(3\) 개}
\end{array}$$

이 글에서는 조건 \(f'(\alpha)=f'(\beta)=0\)을 만족할 때, 삼차방정식 \(f(x)=0\)의 근의 개수를 구하는 방법을 살펴보고, 이렇게 경우를 나눌 때의 장점은 무엇인지 생각해 보겠습니다. (more…)