역함수의 함정, 일대일 대응의 진실 혹은 거짓

실수 전체의 집합을 정의역과 공역으로 사용하는 함수 \(y=f(x)\)가 있습니다. 함수 \(y=f(x)\)의 역함수에 대한 다음 문장 중 진실인 것은 무엇일까요?

진실 혹은 거짓?

1. 함수 \(y=f(x)\)가 역함수를 가지려면 함수 \(y=f(x)\)는 실수 전체에서 연속이어야 한다.
2. \(y=f(x)\)가 역함수를 가지려면 함수 \(y=f(x)\)는 증가 또는 감소함수이어야 한다.

이 글에서는 이 문장들의 참거짓을 판단하고, 역함수와 일대일 대응의 논리적 함정에 대해서 이야기 합니다. (more…)

정답을 부르는 개념 – 부등식을 만족하는 어떤 값

부등식을 만족하는 “어떤 값이 존재한다”라는 조건을 가진 문제는 다음과 같이 최솟값이나 최댓값에 관한 조건을 가진 문제로 바꾸어 풀 수 있습니다. 구체적으로, 다음과 같은 변형이 가능합니다.

\(f(x)\leq a\) 인 어떤 \(x\) 의 값이 존재한다\(\iff f(x)\)의 최솟값\(\leq a\) 이다.
\(f(x)\geq a\) 인 어떤 \(x\) 의 값이 존재한다\(\iff f(x)\)의 최댓값\(\geq a\) 이다.

이렇게 조건을 변형하는 것은 수학 논리에서 매우 중요한 개념 중 하나이기 때문에 이 개념을 이용해서 만들어진 고난도의 문제들이 종종 출제됩니다. 이 글에서는 이러한 변형의 배경과 원리를 알아보고 이를 이용해 문제를 풀어보겠습니다. (more…)

문제로 배우는 문제 풀이 전략 – 불변성, 2010학년도 3월 모의고사 가형 21번


불변성이란 일반적으로,

조작이나, 반복이 계속될 때에도 바뀌지 않는 특수한 상황

을 뜻합니다. 불변성이라는 단어는 조금 생소하게 들릴수도 있지만 사실은 일상 생활에서도 자주 쓰이는 수학적 개념입니다.  등차 수열에서 인접한 두 항의 차이가 항상 일정(공차)하거나 수열의 귀납적 관계(점화식)관계 등이 바로 불변성을 사용하는 좋은 예입니다. 이 글에서는 2009학년도 3월 모의고사 가형 21번을 통해 불변성에 대해 이야기 해보겠습니다.

(more…)

정답을 부르는 개념 – 사차함수와 이중 접선

사차함수의 이중 접선이란 사차함수의 그래프와 서로 다른 두 점에서 동시에 접하는 접선입니다. 이중 접선의 방정식을 구하거나 성질을 이용하는 것은 시험에서 자주 출제되는 아주 중요한 주제중 하나입니다.

이중 접선의 방정식은 여러 방법으로 찾을 수 있습니다. 그중 가장 중요한 것은 두 다항식의 그래프가 접할 때의 성질을 이용한 방법입니다. 이 방법을 사용하면 미분없이 사차함수의 이중 접선을 찾을 수 있습니다.

(more…)