이 글에서는 테이블 적분법의 원리를 설명합니다. 테이블 적분의 원리는 부분적분의 귀납적 관계를 이용한 것입니다.
\(f(x)\)를 n번 미분한 함수를 $$ f^{(n)}(x) : f^{(0)}(x),\ f^{(1)}(x),\ f^{(2)}(x),\ f^{(3)}(x),…,\ f^{(n)}(x),…$$ \(g(x)\)를 n번 부정적분(적분상수=0)한 함수를 $$g^{(-n)}(x) : g^{(0)}(x),\ g^{(-1)}(x),\ g^{(-2)}(x),\ g^{(-3)}(x),…,\ g^{(-n)}(x),…$$라 하면, $$\begin{align}\int f(x)g(x)dx&=f(x)g^{(-1)}(x)-\int f^{(1)}(x)g^{(-1)}(x)dx\\
&=f(x)g^{(-1)}(x)-\left(f^{(1)}(x)g^{(-2)}(x)-\int f^{(2)}(x)g^{(-2)}(x)dx\right)\\
&=f(x)g^{(-1)}(x)-f^{(1)}(x)g^{(-2)}(x)+\int f^{(2)}(x)g^{(-2)}(x)dx\\
&=…\end{align}$$ 입니다. 혹시 이 등식의 패턴이 보이시나요? (more…)