3원 3차 다항식의 인수분해와 응용

3개의 문자를 사용한 3차 다항식 \(x^3+y^3+z^3-3xyz\) 은 거의 모든 참고서나 문제집에서 볼 수 있을 정도로 중요한 식입니다. 특히 이 다항식은 문자의 순서를 바꾸어도 그 결과가 문자의 순서를 바꾸기 전과 변함이 없는 대칭식입니다. 이 글에서는 \( x^3+y^3+z^3-3xyz\) 과 같은 3개의 문자를 사용한 3차 다항식의 인수분해와 그 응용을 다루어 봅니다. (more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

사차 함수와 이중접선으로 둘러싸인 부분의 넓이의 고속적분 – 1/30 공식

4차 함수 \(y=ax^4+bx^3+cx^2+dx+e\) 의 그래프가 직선 \(y=mx+n\)의 그래프와 x좌표가 각각 α, β (단, β > α) 인 두 점에서 이중으로 접할 때 4차 함수의 그래프와 이중 접선으로 둘러싸인 부분의 넓이는 $$\begin{align}&\int_{\alpha}^{\beta}|ax^4+bx^3+cx^2+dx+e-(mx+n)|dx\\
&=\int_{\alpha}^{\beta}|a(x-\alpha)^2(x-\beta)^2|dx\\
&=\frac{|a|}{30}(\beta-\alpha)^5\end{align}$$

이 글에서는 이 식의 증명을 소개합니다. (more…)

역함수의 함정 Ⅱ, 함수와 역함수의 교점

함수 \(f(x)\)와 \(f(x)\)의 역함수 \(g(x)\)의 그래프가 모두 \((a,b)\)를 지날 때, 다음 문장은 참일까요? 거짓일까요?

[진실?/거짓?] 함수 \(f(x)\)와 역함수 \(g(x)\)의 모든 교점 \((a,b)\)는 직선 \(y=x\)위에 있다.

이 글에서는 함수와 역함수의 교점에 대해 흔히 빠질 수 있는 논리 함정에 대해 이야기 하고, 함수와 역함수의 교점에 대한 중요한 몇가지 성질들에 대해 이야기 합니다. (more…)

그래프의 확대 및 축소 변환

\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$

\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$

그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

사차함수의 이중접선과 변곡점의 관계

이중접선을 갖는 사차함수의 그래프는 어떤 특징을 갖고 있을까요? 놀랍게도 변곡점을 갖는 모든 사차함수는 이중접선을 갖고 있습니다. 반대로 이중접선을 갖는 사차함수는 변곡점을 갖고 있습니다. 즉, 사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\) \((a\ne 0)\)의 그래프가 이중접선을 가질 조건은 함수 \(f(x)\)의 그래프가 변곡점을 가질 조건과 같습니다. 즉, 

$$\begin{align}&\text{변곡점을 갖는 사차함수}\\
&\Leftrightarrow\text{이중접선을 갖는 사차함수}\end{align}$$

이고, \(f(x)\)의 그래프가 이중접선을 갖기 위한 조건은

$$3b^2-8ac>0$$

입니다. 그리고 이 때, 이중접선의 방정식은

$$y=\left(\frac{b(b^2-4ac)}{8a^2}+d\right)x-\frac{(b^2-4ac)^2}{64a^3}+e$$

입니다. 이 글에서는 이 조건을 증명하고, 이중접선의 방정식을 유도합니다.

(more…)

전설의 수학 문제를 찾아서 – 3인의 죄수

전설의 수학 문제를 찾아서, 3번째 문제는 3인의 죄수 문제입니다. 이 문제 역시 전설의 수학 문제 #1과 #2와 같은 조건부 확률 문제입니다. 서벨로니 (Serbelloni) 문제라고도 알려진 이 문제는 1966년 여름 서벨로니 별장에서 열린 이론 생물학회에서 화제가 된 문제입니다.

A, B, C 3명의 죄수가 있습니다. 3명의 죄수 중에서 곧 2명이 처형이 될 예정이고, 3인의 죄수 모두가 이 사실을 알고 있습니다. 하지만 처형이 될 죄수 2명의 이름은 간수만 알고 있습니다. 어느 날 죄수A는 간수에게 죄수B와 C 2명 중에서 적어도 1명이 처형되는 것은 확실하니 B나 C중 누가 처형이 되는지 한 사람의 이름을 말해달라고 부탁했습니다. 이 때 간수는 B가 처형이 될 것이라고 대답해 주었습니다.

이 말을 들은 죄수 A는 자신이 처형될 확률이 낮아졌다고 무척 기뻐했습니다. 대답을 듣기 전 자신이 처형될 확률은 \(\frac{2}{3}\approx 66.7\%\) 였지만 대답을 듣고 난 후 뒤에는 B와 같이 처형될 죄수는 자신이 아니면 C이므로 앞으로 자신이 처형될 확률이 \(\frac{1}{2}=50\%\) 가 되어 자신이 처형될 확률이 간수의 대답을 듣기 전보다 낮아졌다고 생각했기 때문입니다. 간수가 거짓말을 하지 않는다면 과연 죄수의 판단은 옳은 것일까요?

(more…)