항등식의 기술

$$f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$라고 할 때,

서로 다른 \(n+1\)개의 실수 \(p_1,p_2,…,p_{n+1}\)에 대해,  $$\begin{align}
&f(p_1)=f(p_2)=\cdots=f(p_{n+1})=0\\
&\Leftrightarrow f(x)=0 \text{이 }x\text{에 대한 항등식}\end{align}$$

  항등식에 관한 문제를 풀다보면 이 사실을 핵심으로 하는 풀이를 가진 문제를 종종 볼 수 있습니다.  이 글에서는 이 명제를 증명하고, 실제 문제에서 어떻게 이 명제를 사용할 수 있는지 살펴보겠습니다.

(more…)

소소하지만 확실한 테크닉 – 변의 길이가 무리수인 삼각형과 헤론의 공식

삼각형의 세 변의 길이가 각각 \(a\), \(b\), \(c\)이고, 한 개 이상의 변의 길이가 무리수인 삼각형의 넓이는 헤론의 공식의 또 다른 형태

$$\frac{1}{4}\sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)}$$

을 사용합니다. 이 글에서는 이 식의 사용법과 증명을 알아 보겠습니다.

(more…)

사차함수의 대칭성 Ⅲ – 이중접선과 넓이의 비율

사차함수 그래프의 이중접선을 \(l_1\), 이중 접선과 평행하고 한 점에서 접하는 직선을 \(l_2\) 라고 할 때, 사차함수의 그래프와 \(l_2\)로 둘러싸인 부분의 넓이와 사차함수의 그래프와 \(l_1\)으로 둘러싸인 부분의 넓이의 비율은 다음과 같습니다.

$$S_1:S_2:S_3=1:\sqrt{2}:1$$

(more…)