사차함수의 이중접선과 변곡점의 관계

이중접선을 갖는 사차함수의 그래프는 어떤 특징을 갖고 있을까요? 놀랍게도 변곡점을 갖는 모든 사차함수는 이중접선을 갖고 있습니다. 반대로 이중접선을 갖는 사차함수는 변곡점을 갖고 있습니다. 즉, 사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\) \((a\ne 0)\)의 그래프가 이중접선을 가질 조건은 함수 \(f(x)\)의 그래프가 변곡점을 가질 조건과 같습니다. 즉, 

$$\begin{align}&\text{변곡점을 갖는 사차함수}\\
&\Leftrightarrow\text{이중접선을 갖는 사차함수}\end{align}$$

이고, \(f(x)\)의 그래프가 이중접선을 갖기 위한 조건은

$$3b^2-8ac>0$$

입니다. 그리고 이 때, 이중접선의 방정식은

$$y=\left(\frac{b(b^2-4ac)}{8a^2}+d\right)x-\frac{(b^2-4ac)^2}{64a^3}+e$$

입니다. 이 글에서는 이 조건을 증명하고, 이중접선의 방정식을 유도합니다.

(more…)

사차함수의 그래프가 변곡점을 가질 조건

사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\)의 그래프가 두 개의 변곡점을 가질 조건은

$$3b^2-8ac>0$$

이고, 두 변곡점의 \(x\)좌표는

$$\frac{-3b\pm\sqrt{3(3b^2-8bc)}}{12a}$$

입니다. 이 글에서는 이 조건의 원리를 알아보고 변곡점을 갖고 있는 사차함수 그래프의 모양을 살펴봅니다.

(more…)

사차함수의 대칭성 Ⅲ – 이중접선과 넓이의 비율

사차함수 그래프의 이중접선을 \(l_1\), 이중 접선과 평행하고 한 점에서 접하는 직선을 \(l_2\) 라고 할 때, 사차함수의 그래프와 \(l_2\)로 둘러싸인 부분의 넓이와 사차함수의 그래프와 \(l_1\)으로 둘러싸인 부분의 넓이의 비율은 다음과 같습니다.

$$S_1:S_2:S_3=1:\sqrt{2}:1$$

(more…)

사차함수의 대칭성 II – 이중접선과 그래프의 비율 관계

사차함수 그래프의 대칭성과 \(1:\sqrt{2}\) 법칙 를 확장하면, 사차함수 그래프의 두 변곡점을 지나는 직선 \(l\)에 대해 다음과 같은 대칭성과 비율 관계를 확인할 수 있습니다.

사차함수의 이중접선과 평행하고 한점에서 접하는 직선, 변곡점을 지나는 직선, 이중접선을 각각 \(l_1\), \(l_2\), \(l_3\)라 할 때,

[관계1]. \(l_1\parallel l_2 \parallel l_3\)
[관계2]. \(l_1\)과 \(l_2\)사이의 거리:\(l_2\)와 \(l_3\)사이의 거리=\(5:4\)
[관계3]. 선분 \(\mathrm{HI}\)과 \(\mathrm{JK}\)의 중점은 일치한다.
[관계4]. 세 점 \(\mathrm{E}\), \(\mathrm{G}\), \(\mathrm{F}\)는 한 직선 위에 있고, \(x\)축과 직교한다.
[관계5]. \(\mathrm{HI}:\mathrm{JK}:\mathrm{AB}:\mathrm{CD}=1:\sqrt{5}:\sqrt{3}:\sqrt{6}\)

(more…)