포물선의 모양은 한 가지뿐! – 포물선의 닮음 관계

모든 정사각형의 모양은 한가지뿐입니다. 그렇다면 정삼각형의 모양은 모두 몇가지 일까요? 모든 정삼각형의 모양 역시 한가지입니다. 이러한 도형들의 공통점은 무엇일까요?  바로 닮음입니다. 모든 정사각형은 서로 닮음이고, 모든 정삼각형도 서로 닮음입니다. 마찬가지로, 포물선의 모양은 오직 한가지 뿐입니다.

$$\begin{align}
&①.\text{ 모든 포물선은 서로 닮음이다.}\\
&②.\ y=ax^2\text{과 }y=bx^2\text{의 닮음비}=|b|:|a|\end{align}$$

두 포물선의 서로 닮음은 다른 단원의 개념과 결합되어 어려운 문제를 만들어내는데 종종 사용되곤 합니다. 이 글에서는 포물선의 서로 닮음을 설명하고, 그 의미를 알아보겠습니다.

(more…)

그래프의 확대 및 축소 변환

\(y=f(x)\)의 그래프를 \(y\)축 방향으로 \(p\)배 \((p>0)\) 확대 변환한 그래프의 방정식은 $$y=pf(x)$$

\(y=f(x)\)의 그래프를 \(x\)축 방향으로 \(\dfrac{1}{q}\)배 \((q>0)\) 확대 변환한 그래프의 방정식은 $$y=f(qx)$$

그래프의 확대 변환은 교과서에서 그 이름을 찾을 수 없는 개념이지만 많은 문제에서 사용하고 있는 개념입니다. 이 글에서는 그래프의 확대 변환의 개념과 확대 변환이 사용되는 예를 설명합니다.

(more…)

소소하지만 확실한 테크닉 – 변의 길이가 무리수인 삼각형과 헤론의 공식

삼각형의 세 변의 길이가 각각 \(a\), \(b\), \(c\)이고, 한 개 이상의 변의 길이가 무리수인 삼각형의 넓이는 헤론의 공식의 또 다른 형태

$$\frac{1}{4}\sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)}$$

을 사용합니다. 이 글에서는 이 식의 사용법과 증명을 알아 보겠습니다.

(more…)

사차함수의 대칭성 Ⅲ – 이중접선과 넓이의 비율

사차함수 그래프의 이중접선을 \(l_1\), 이중 접선과 평행하고 한 점에서 접하는 직선을 \(l_2\) 라고 할 때, 사차함수의 그래프와 \(l_2\)로 둘러싸인 부분의 넓이와 사차함수의 그래프와 \(l_1\)으로 둘러싸인 부분의 넓이의 비율은 다음과 같습니다.

$$S_1:S_2:S_3=1:\sqrt{2}:1$$

(more…)