소소하지만 확실한 테크닉 – 90도 회전이동

점 \(\mathrm{A}(a,b)\)를 원점 \(\mathrm{O}\)를 중심으로 반시계방향으로 \(90^\circ\) (또는 \(+90^\circ\)) 회전 이동한 점 \(\mathrm{A^\prime}\)과 시계 방향으로 \(90^\circ\) (또는 \(-90^\circ\)) 회전 이동한 점  \(\mathrm{A^{\prime\prime}}\)의 좌표는 각각 다음과 같습니다. $$\begin{align}&\mathrm{A}(a,b)\xrightarrow{+90^\circ회전}\mathrm{A’}(-b,a)\\
&\mathrm{A}(a,b)\xrightarrow{-90^\circ회전}\mathrm{A^{\prime\prime}}(b,-a)\end{align}$$

이 글에서는 원점을 중심으로 하는 90° 회전 이동의 결과를 증명하고 활용방법에 대해서 이야기 합니다. (more…)

소소하지만 확실한 테크닉 – 삼차함수의 극댓값과 극솟값의 합

삼차함수 $$f(x)=ax^3+bx^2+cx+d$$가 \(x=\alpha\), \(x=\beta\) 에서 각각 극댓값과 극솟값 \(f(\alpha)\)  \(f(\beta)\)를 갖고 변곡점의 좌표가 \((m, f(m))\) 일 때, 두 극값의 합 \(f(\alpha)+f(\beta)\)는 다음과 같습니다.

$$f(\alpha)+f(\beta)=2f(m)=2f\left(\frac{\alpha+\beta}{2}\right)$$

이 식을 사용하면 극값의 합과 관계된 문제에서 복잡한 계산을 많이 줄일 수 있습니다. 이 글에서는 두 극값의 합이 변곡점과 어떤 관계를 갖고 있는지 설명합니다.

(more…)

소소하지만 확실한 테크닉 – 삼차함수의 극값의 차

3차함수 $$f(x)=ax^3+bx^2+cx+d$$가 \(x=\alpha\), \(x=\beta\) (단, \(\alpha<\beta\)) 에서 극값 \(f(\alpha)\)와 \(f(\beta)\)를 가질 때, 두 극값의 차는 다음과 같습니다.

$$
|f(\alpha)-f(\beta)|=\frac{|a|}{2}(\beta-\alpha)^3\tag{1}\label{eq0}$$

이 글에서는 이 공식의 증명과 활용에 대해 이야기 합니다.

(more…)

중학교 수학만으로 증명하는 점-직선사이의 거리

점과 직선사이의 거리를 구하는 공식은 다음과 같습니다.

점\(\mathrm{P}(x_0,y_0)\)부터 직선 \(l\):\(ax+by+c=0\)까지의 거리$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$

점과 직선사이의 거리 공식은 고등학교 교과 과정에서 배우는 것이지만 중학교 교과 과정에서 배우는 기본적인 도구만을 사용하여 이 공식을 증명할 수 있습니다. 이 글에서는 중학교 교과 과정의 수학만을 사용하여 점과 직선사이의 거리 공식을 증명합니다.

(more…)

사차 함수와 이중접선으로 둘러싸인 부분의 넓이의 고속적분 – 1/30 공식

4차 함수 \(y=ax^4+bx^3+cx^2+dx+e\) 의 그래프가 직선 \(y=mx+n\)의 그래프와 x좌표가 각각 α, β (단, β > α) 인 두 점에서 이중으로 접할 때 4차 함수의 그래프와 이중 접선으로 둘러싸인 부분의 넓이는 $$\begin{align}&\int_{\alpha}^{\beta}|ax^4+bx^3+cx^2+dx+e-(mx+n)|dx\\
&=\int_{\alpha}^{\beta}|a(x-\alpha)^2(x-\beta)^2|dx\\
&=\frac{|a|}{30}(\beta-\alpha)^5\end{align}$$

이 글에서는 이 식의 증명을 소개합니다. (more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)