이차함수 \(y=ax^2+bx+c\)위에 있는 세 점 \(\mathrm{P}\), \(\mathrm{Q}\), \(\mathrm{R}\)의 \(x\)좌표가 각각 \(p\),\(q\),\(r\)이라 할 때, (단, \(p<q<r\)) 세 점을 꼭짓점으로 하는 삼각형의 넓이는
$$\frac{|a|}{2}(p-q)(q-r)(r-p)$$
이차함수 \(y=ax^2+bx+c\)위에 있는 세 점 \(\mathrm{P}\), \(\mathrm{Q}\), \(\mathrm{R}\)의 \(x\)좌표가 각각 \(p\),\(q\),\(r\)이라 할 때, (단, \(p<q<r\)) 세 점을 꼭짓점으로 하는 삼각형의 넓이는
$$\frac{|a|}{2}(p-q)(q-r)(r-p)$$
사차함수 \(f(x)\)의 그래프와 사차함수 \(f(x)\)의 두 변곡점을 지나는 직선으로 둘러싸인 세 부분의 넓이의 비는 다음과 같습니다.
$$S_1:S_2:S_3=1:2:1$$
(more…)사차함수 그래프의 이중접선을 \(l_1\), 이중 접선과 평행하고 한 점에서 접하는 직선을 \(l_2\) 라고 할 때, 사차함수의 그래프와 \(l_2\)로 둘러싸인 부분의 넓이와 사차함수의 그래프와 \(l_1\)으로 둘러싸인 부분의 넓이의 비율은 다음과 같습니다.
$$S_1:S_2:S_3=1:\sqrt{2}:1$$
사차함수 그래프의 대칭성과 \(1:\sqrt{2}\) 법칙 를 확장하면, 사차함수 그래프의 두 변곡점을 지나는 직선 \(l\)에 대해 다음과 같은 대칭성과 비율 관계를 확인할 수 있습니다.
사차함수의 이중접선과 평행하고 한점에서 접하는 직선, 변곡점을 지나는 직선, 이중접선을 각각 \(l_1\), \(l_2\), \(l_3\)라 할 때,
[관계1]. \(l_1\parallel l_2 \parallel l_3\)
[관계2]. \(l_1\)과 \(l_2\)사이의 거리:\(l_2\)와 \(l_3\)사이의 거리=\(5:4\)
[관계3]. 선분 \(\mathrm{HI}\)과 \(\mathrm{JK}\)의 중점은 일치한다.
[관계4]. 세 점 \(\mathrm{E}\), \(\mathrm{G}\), \(\mathrm{F}\)는 한 직선 위에 있고, \(x\)축과 직교한다.
[관계5]. \(\mathrm{HI}:\mathrm{JK}:\mathrm{AB}:\mathrm{CD}=1:\sqrt{5}:\sqrt{3}:\sqrt{6}\)
사차함수 \(f(x)\)의 그래프가 두 개의 변곡점을 갖고 있을 때, \(f(x)\)를 \(f(x)\)의 이계도 함수 \(f^{\prime\prime}(x)\)로 나눈 몫과 나머지를 각각 \(Q(x)\), \(R(x)\)라 하면, 사차함수 \(f(x)\)의 두 변곡점을 지나는 직선의 방정식은 $$y=R(x)$$
4차함수 \(f(x)\)를 \(f(x)\)의 도함수 \(f'(x)\)로 나눈 몫과 나머지를 각각 \(Q(x)\), \(R(x)\)라 하면, 사차 함수의 세 극점을 지나는 포물선의 방정식은 $$y=R(x)$$
이 글에서는 이 방법의 장점과 원리를 설명합니다. (more…)\(f(x)\)는 \(x\)의 삼차 다항식이다. \(f(x)\)를 \(f(x)\)의 도함수 \(f'(x)\)로 나눈 나머지가 상수이면, 방정식 $$f(x)=0$$을 만족하는 실근은 1개임을 증명하시오.
이 문제는 삼차함수의 흥미로운 성질을 잘 보여주고 있는 문제입니다. 이 문제는 삼차함수의 어떤 성질을 이용하여 만들어진 문제일까요? 과연 \(f(x)\)를 \(f'(x)\)로 나눈 나머지의 의미는 무엇일까요?