사차함수의 이중접선과 변곡점의 관계

이중접선을 갖는 사차함수의 그래프는 어떤 특징을 갖고 있을까요? 놀랍게도 변곡점을 갖는 모든 사차함수는 이중접선을 갖고 있습니다. 반대로 이중접선을 갖는 사차함수는 변곡점을 갖고 있습니다. 즉, 사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\) \((a\ne 0)\)의 그래프가 이중접선을 가질 조건은 함수 \(f(x)\)의 그래프가 변곡점을 가질 조건과 같습니다. 즉, 

$$\begin{align}&\text{변곡점을 갖는 사차함수}\\
&\Leftrightarrow\text{이중접선을 갖는 사차함수}\end{align}$$

이고, \(f(x)\)의 그래프가 이중접선을 갖기 위한 조건은

$$3b^2-8ac>0$$

입니다. 그리고 이 때, 이중접선의 방정식은

$$y=\left(\frac{b(b^2-4ac)}{8a^2}+d\right)x-\frac{(b^2-4ac)^2}{64a^3}+e$$

입니다. 이 글에서는 이 조건을 증명하고, 이중접선의 방정식을 유도합니다.

(more…)

사차함수의 그래프가 변곡점을 가질 조건

사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\)의 그래프가 두 개의 변곡점을 가질 조건은

$$3b^2-8ac>0$$

이고, 두 변곡점의 \(x\)좌표는

$$\frac{-3b\pm\sqrt{3(3b^2-8bc)}}{12a}$$

입니다. 이 글에서는 이 조건의 원리를 알아보고 변곡점을 갖고 있는 사차함수 그래프의 모양을 살펴봅니다.

(more…)

삼차함수의 접선의 개수

좌표평면 위의 점 \((a,b)\)에서 삼차함수 \(f(x)\)의 그래프에 그을 수 있는 접선의 개수는 \(1\)개에서 \(3\)개로 점 \((a,b)\)의 위치에 따라 달라집니다.

이 글에서는 점 \((a,b)\)에서 그을 수 있는 접선의 개수가 점 \((a,b)\)에 따라 어떻게 달라지는지 그 이유는 무엇인지를 구체적으로 알아봅니다.

(more…)

특정한 조건을 만족하는 삼차방정식의 근의 개수 Ⅰ

문제를 풀다보면 특정한 조건을 만족하는 상황에서 삼차방정식 \(f(x)=0\)의 근의 개수를 구해야 할 때가 종종 있습니다. 삼차함수 \(f(x)\)와 도함수 \(f'(x)\), 두 실수 \(\alpha\)와 \(\beta\)에 대해, \(f'(\alpha)=f'(\beta)=0\)이면, 삼차방정식 \(f(x)=0\)의 근의 개수는 다음과 같은 방법으로 구할 수 있습니다.

$$\begin{array}{c|c} \text{조건} & \text{근의 개수}\\\hline
f(\alpha)f(\beta)>0 & \text{\(1\)개}\\\hline
f(\alpha)f(\beta)=0 & \begin{array} {c|c} \alpha=\beta & \text{\(1\)개}\\\hline \alpha \ne \beta & \text{\(2\) 개}\end{array} \\\hline
f(\alpha)f(\beta)<0 & \text{\(3\) 개}
\end{array}$$

이 글에서는 조건 \(f'(\alpha)=f'(\beta)=0\)을 만족할 때, 삼차방정식 \(f(x)=0\)의 근의 개수를 구하는 방법을 살펴보고, 이렇게 경우를 나눌 때의 장점은 무엇인지 생각해 보겠습니다. (more…)

첫째항부터 성립하는 수열과 공합 S0의 관계

수열 \(\{a_n\}\)의 첫째항부터 제 \(0\)항 까지의 합을 공합(空合, empty sum)이라고 부릅니다. 첫째항부터 제 \(n\)항까지의 합을 \(S_n\)이라고 할 때, $$a_n=S_n-S_{n-1}$$이 \(n=1\)부터 성립할 필요충분조건은

$$S_0=0$$

첫째항부터 제 \(0\)항까지의 합을 어떻게 정의할 수 있을까요? 그리고 그 의미는 무엇일까요? 이 글에서는 조건 \(S_0=0\)의 필요충분성을 증명하고, 공합 \(S_0\)의 의미를 알아봅니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 적분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$

입니다. 이 글에서는 역함수 치환적분의 원리를 설명하고, 이를 이용해서 역삼각함수의 적분을 증명해 보겠습니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 적분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$

입니다. 이 글에서는 역함수 치환적분의 원리를 설명하고, 이를 이용해서 역삼각함수의 적분을 증명해 보겠습니다.

(more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 미분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x,\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}
\frac{d}{dx}\sin^{-1}x&=\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\cos^{-1}x&=-\frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx}\tan^{-1}x&=\frac{1}{1+x^2}
\end{align}$$

입니다. 이 글에서는 역삼각함수의 도함수를 구하는 방법과 그 원리를 설명합니다.

(more…)

조립제법의 원리 – 나눗셈의 귀납적 관계

조립제법이란 다항식을 일차식으로 나눈 몫과 나머지를 곱셈과 덧셈만을 반복하여  빠르게 구하는 방법입니다. 다항식을 일차식으로 나누면 특별한 귀납적 관계를 발견할 수 있습니다. 이 귀납적 관계를 핵심원리로 삼아 만들어진 방법이 바로 조립제법입니다. 이 글에서는 일차식의 나눗셈이 가지고 있는 귀납적 관계를 살펴보고 조립제법이 어떻게 이 원리를 사용하고 있는지 알아보겠습니다.

(more…)

소소하지만 확실한 테크닉 – 삼각함수 근사를 이용한 극한의 계산

  \(\frac{0}{0}\) 형태를 가진 삼각함수의 극한은 다음과 같은 근사를 사용하여 간단하면서도 빠르게 그 값을 계산할 수 있습니다.

\(x\rightarrow 0\) 일 때, $$\begin{aligned}\sin{x}&\approx x\\\tan{x}&\approx x\\1-\cos{x}&\approx \frac{x^2}{2}\end{aligned}$$

이 글에서는 삼각함수의 근사를 이용해 삼각함수의 극한을 계산하는 법과 주의할 점에 대해서 알아보겠습니다.

(more…)

소소하지만 확실한 테크닉 – 90도 회전이동

점 \(\mathrm{A}(a,b)\)를 원점 \(\mathrm{O}\)를 중심으로 반시계방향으로 \(90^\circ\) (또는 \(+90^\circ\)) 회전 이동한 점 \(\mathrm{A^\prime}\)과 시계 방향으로 \(90^\circ\) (또는 \(-90^\circ\)) 회전 이동한 점  \(\mathrm{A^{\prime\prime}}\)의 좌표는 각각 다음과 같습니다. $$\begin{align}&\mathrm{A}(a,b)\xrightarrow{+90^\circ회전}\mathrm{A’}(-b,a)\\
&\mathrm{A}(a,b)\xrightarrow{-90^\circ회전}\mathrm{A^{\prime\prime}}(b,-a)\end{align}$$

이 글에서는 원점을 중심으로 하는 90° 회전 이동의 결과를 증명하고 활용방법에 대해서 이야기 합니다. (more…)

삼차함수 그래프의 대칭성과 4등분 법칙

삼차함수 \(y=ax^3+bx^2+cx+d\) 의 그래프는  다음과 같은 대칭성을 가지고 있습니다.

대칭성① : 삼차함수의 그래프는 변곡점 \(\left(-\dfrac{b}{3a}, f(-\dfrac{b}{3a})\right)\)에 대해 점대칭이다.
대칭성② : 삼차함수의 그래프는 합동인 \(8\)개의 평행사변형으로 분할할 수 있다.(\(4\)등분 법칙)

이 글에서는 삼차함수 그래프의 대칭성을 증명하고, 이 대칭성을 활용하는 법에 대해 이야기 합니다.

(more…)

역함수의 함정 Ⅱ, 함수와 역함수의 교점

함수 \(f(x)\)와 \(f(x)\)의 역함수 \(g(x)\)의 그래프가 모두 \((a,b)\)를 지날 때, 다음 문장은 참일까요? 거짓일까요?

[진실?/거짓?] 함수 \(f(x)\)와 역함수 \(g(x)\)의 모든 교점 \((a,b)\)는 직선 \(y=x\)위에 있다.

이 글에서는 함수와 역함수의 교점에 대해 흔히 빠질 수 있는 논리 함정에 대해 이야기 하고, 함수와 역함수의 교점에 대한 중요한 몇가지 성질들에 대해 이야기 합니다. (more…)

베이즈 정리와 조건부 확률의 관계

베이즈 정리란 사후 확률 (posterior probability) 을 사전 확률 (prior probability) 를 이용하여 표현하는 방법으로 수학적으로 다음과 같이 표현합니다.

사건 B가 먼저 일어난 후 사건 A가 일어날 때, $$P(B|A)=\frac{P(A|B)\cdot P(B)}{P(A)}$$$$\begin{aligned}P(B|A)&\text{ : 사후 확률, 나중에 일어나는 사건 A를 전제로 하는 조건부 확률}\\
P(B)&\text{ : 사전 확률,  사건 A가 일어나기전 사건 B가 일어날 확률}\\
P(A|B)&\text{ : 사건 B가 일어난 후에 사건 A가 일어날 확률}\end{aligned}$$

이 글에서는 베이즈 정리를 직접 유도해보면서 사후 확률과 베이즈 정리의 의미와 목적에 대해 설명하고, 이 정리를 어떻게 활용할 수 있는지에 대해 이야기 해보겠습니다. (more…)