삼각형의 중선을 이용하면 복잡한 벡터의 내적 문제를 쉽게 풀 수 있습니다. 삼각형 OAB에서 선분 \(\mathrm{AB}\)의 중점을 \(\mathrm{M}\) 이라 하면 다음과 같은 사실이 성립합니다.
$$\mathrm{\overrightarrow{OA}\cdot\overrightarrow{OB}=OM^2-MB^2}\tag{*}\label{eq*}$$
이 공식은 벡터의 내적 문제, 특히 최대/최소 문제를 해결하기 위한 최강의 공식 중 하나입니다. 이 글에서는 이 공식의 증명과 그 의미를 설명하고, 이 공식과 관계있는 기출 문제를 풀어봅니다.