이항분포 B(n,p)의 평균 E(X)=np, 분산 V(X)=npq의 증명 (2017학년도 서울시립대 논술 2번)

이항분포 \(\mathrm{B}(n,p)\)를 따르는 확률변수 \(X\)의 평균과 분산은 다음과 같습니다.

평균 \(\mathrm{E}(X)=np\)
분산 \(\mathrm{V}(X)=npq,\ q=1-p\)

이 글에서는 이항계수의 흡수 항등식소소하지만 확실한 테크닉 1개만을 사용하여 이 결과를 증명해 보겠습니다. (2017학년도 서울시립대 논술 2번) (more…)

정답을 부르는 개념 – 이항계수의 흡수 항등식

이항계수의 흡수 항등식 (absorption identity)는 약방의 감초처럼 이항계수를 사용하는 수식에서 자주 쓰이는 항등식입니다. 이 항등식을 직접 설명하고 있는 교과서는 없지만, 사실 이 항등식은 평가원 기출문제에서 종종 사용될 정도로 중요한 항등식입니다.

자연수 \(r(1\leq r \leq k)\)에 대하여$$_kC_r=\frac{k}{r}\times _{k-1}C_{r-1}$$

이 글에서는 이 항등식을 증명하고, 이 항등식을 활용하는 방법과 과거 평가원 기출문제에서 이 항등식이 어떻게 다루었는지에 대해 이야기 해보겠습니다. (more…)

이차곡선 문제의 핵심 전략 (2) – 2013학년도 6월 모의고사 27번

이차곡선 문제를 풀 때 사용할 수 있는 핵심 전략은 다음과 같습니다.

● 타원의 정의를 이용할 수 있는 보조선 그리기
● 동일한 구조의 식에서 방정식 추론하기 (주어진 식을 보고 사용할 식을 결정)
● 근과 계수의 관계
● 중점 연결 정리(타원, 쌍곡선)

이 글에서는 다음 문제의 풀이를 통해서 이러한 핵심 전략을 문제에서 어떻게 사용할 수 있는지 알아보겠습니다.

2013학년도 6월 모의고사 가형 27번

두점 \(\mathrm F(5,0)\), \(\mathrm F'(-5,0)\)을 초점으로 하는 타원 위의 서로 다른 두 점 \(\mathrm P\), \(\mathrm Q\)에 대하여 원점 \(\mathrm O\)에서 선분 \(\mathrm{PF}\)와 선분 \(\mathrm{QF’}\)에 내린 수선의 발을 각각 \(\mathrm H\)와 \(\mathrm I\)라 하자. 점 \(\mathrm H\)와 \(\mathrm I\)가 각각 선분 \(\mathrm{PF}\)와 선분 \(\mathrm{QF’}\)의 중점이고, \(\mathrm{\overline{OH}\times\overline{OI}=10}\)일 때, 이 타원의 장축의 길이를 \(l\)이라 하자. \(l^2\)의 값을 구하시오. (단, \(\mathrm{\overline{OH}\neq\overline{OI}}\))

(more…)

소확테 2개의 환상의 콜레보 – 2018학년도 수능 나형 30번

가끔은 아주 어려워 보이는 문제가 단순한 테크닉의 조합만으로 쉽게 풀리는 경우가 있습니다. 2018학년도 수능 나형 30번이 그러한 경우입니다. 이 문제를 풀기 위해서 필요한 것은 [소소하지만 확실한 테크닉] 2개와 (조금 길긴 하지만) 단순한 계산 뿐입니다.

2018학년도 수능 나형 30번

이차함수 \(f(x)=\dfrac{3x-x^2}{2}\) 에 대하여 구간 \([0,\infty)\) 에서 정의된 함수 \(g(x)\) 가 다음 조건을 만족시킨다.

(가) \(0\leq x\lt 1\) 일 때, \(g(x)=f(x)\) 이다.
(나) \(n\leq x \lt n+1\) 일 때, $$g(x)=\frac{1}{2^n}\{f(x-n)-(x-n)\}+x$$이다. (단, \(n\)은 자연수이다.)

어떤 자연수 \(k(k\geq 6)\)에 대하여 함수 \(h(x)\)는 $$h(x)=
\begin{cases}
g(x) & \text{($0\leq x \lt 5$ 또는 $x\geq k$)}\\
2x-g(x) & \text{($5\leq x \lt k$)}
\end{cases}$$이다. 수열 \(\{a_n\}\)을 \(a_n=\displaystyle\int_0^nh(x)dx\) 라 할 때, $$\lim\limits_{n\to\infty}(2a_n-n^2)=\frac{241}{768}$$이다. \(k\)의 값을 구하시오.

(more…)

3변수 교대식의 성질과 인수분해

3변수 교대식은 3개의 문자중에서 어떤 2문자를 바꾸어 대입하여 계산하더라도 원래의 식과 그 부호가 반대로 되는 식입니다. 즉 3문자 교대식 \(f(x,y,z)\)는 다음과 같은 성질을 만족합니다. $$\begin{align}f(x,y,z)&=-f(y,x,z)\\&=-f(x,z,y)\\&=-f(z,y,x)\end{align}$$ 3변수 교대식의 인수분해는 다음과 같은 교대식의 중요한 성질을 이용합니다.

3변수 교대식$$f(x,y,z)=(x-y)(y-z)(z-x)\cdot g(x,y,z)$$로 인수분해가 되고, 이때 \(g(x,y,z)\)는 대칭식이 된다.

이 글에서는 이 사실을 증명하고, 교대식의 성질을 이용한 인수분해 문제를 예를 들어 설명하겠습니다.

(more…)