베타함수와 고속적분

실수 부분이 0보다 큰 복소수 p, q에 대하여 베타함수는 다음과 같이 정의된 함수입니다. .

$$\mathrm B(p,q)=\int_0^{1}x^{p-1}(1-x)^{q-1}dx$$특히, 음이 아닌 정수 m, n 에 대하여 다음과 같은 적분식이 성립합니다.
[1] 제1종 오일러 함수 $$\int_{\alpha}^{\beta}(x-\alpha)^m(\beta-x)^ndx=\frac{m!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}$$[2] \(\alpha=0\) 이고 \(\beta=1\) 일 때, $$\int_0^{1}x^m(1-x)^ndx=\frac{m!n!}{(m+n+1)!}$$

이 식은 여러 형태의 넓이를 고속적분하는데 사용합니다. 이 글에서는 이 식의 증명과 활용을 소개합니다. (more…)

삼차함수의 그래프와 접선으로 둘러싸인 넓이의 고속 적분 -1/12 공식

3차 함수 \(y=ax^3+bx^2+cx+d\) 의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접하고,  x좌표가 β인 점에서 만날 때, 3차 함수의 그래프와 직선으로 둘러싸인 부분의 넓이는

$$\begin{equation}\begin{aligned}&\int_{\alpha}^{\beta}\left|ax^3+bx^2+cx+d-(mx+n)\right|dx\\
&=\int_{\alpha}^{\beta}\left|a(x-\alpha)^2(x-\beta)\right|dx\\
&=\frac{|a|}{12}(\beta-\alpha)^4\end{aligned}\end{equation}$$

이 글에서는 이 식의 간단한 증명을 소개합니다.

(more…)

이차함수의 그래프와 두 직선으로 둘러싸인 넓이의 고속 적분 – 1/3 공식

포물선과 직선으로 둘러 싸인 부분의 넓이를 빠르게 구할 수 있는 고속 적분 공식을 설명합니다.

포물선인 이차함수 \(y=ax^2+bx+c\)의 그래프가 직선 \(y=mx+n\) 의 그래프와 x좌표가 α인 점에서 접할 때, 포물선과 접선, 직선 x=β 로 둘러 싸인 부분의 넓이는 $$\frac{|a|}{3}|\beta-\alpha|^3$$ 입니다. 예를 들어, \(\alpha<\beta\)일 때,  구하려는 부분의 넓이는$$\begin{align}&\int_{\alpha}^{\beta}\left|(ax^2+bx+c-(mx+n))\right|dx\\&=\frac{|a|}{3}|\beta-\alpha|^3\end{align}$$입니다.

(more…)

sin(x), cos(x)를 tan(x/2)로 나타내기 – Weierstrass 치환

\(t=\tan\frac{x}{2}\) 로 치환하면 \(\sin x\) 와 \(\cos x\) 를 \(t\) 로 표현할 수 있습니다.

$$\begin{equation}\begin{aligned}\sin x&=\frac{2t}{1+t^2}\\\cos x&=\frac{1-t^2}{1+t^2}\end{aligned}\end{equation}$$

이 결과는 삼각함수의 치환적분에 유용하게 사용할 수 있습니다. 이 글에서는 이 변형의 증명과 응용을 설명합니다.

(more…)