소소하지만 확실한 테크닉 -벡터의 90° 회전이동 (2010학년도 수능 가형 14번)

원점을 중심으로 [어떤 점을 원점을 중심으로 \(\pm 90^\circ\) 회전이동]하는 것과 같은 방법으로 평면 벡터를 \(\pm 90^\circ\) 회전이동한 결과도 간단히 표현할 수 있습니다.

평면 벡터 \(\overrightarrow{p}=(a,b)\)에 대해

$$\begin{align}&(a,b)\xrightarrow{+90^\circ회전}(-b,a)\\
&(a,b)\xrightarrow{-90^\circ회전}(b,-a)\end{align}$$

2010학년도 가형 14번 문제는 이러한 벡터의 회전이동을 어떻게 이용할 수 있는지 잘 보여주는 문제입니다. 보조선을 이용한 해법이 많이 알려져있지만, 벡터의 회전 이동을 이용하면 보조선 없이 짧은 계산만으로 문제가 요구하는 것을 찾아낼 수 있습니다.

(more…)

메넬라우스의 정리 사용 설명서

$$\mathrm{\frac{AP}{PB}\cdot\frac{QC}{BQ}\cdot\frac{RA}{CR}}=1$$

메넬라우스의 정리는 그 증명을 이해해도 사용하는 방법을 잘 익혀두지 않으면 실제로 문제를 풀 때 능숙하게 쓰기 어려운 정리입니다. 하지만 일단 사용 방법을 익혀두면 답을 구하는데 아주 편리하게 사용할 수 있는 정리이기도 합니다. 이 글에서는 평면 벡터와 같은 문제에서 메넬라우스의 정리를 잘 쓸 수 있는 방법에 대해 살펴봅니다.

(more…)

사각형의 가중 무게 중심의 위치 (aPA+bPB+cPC+dPD=0)

사각형의 가중 무게 중심 $$a\overrightarrow{\mathrm{PA}}+b\overrightarrow{\mathrm{PB}}+c\overrightarrow{\mathrm{PC}}+d\overrightarrow{\mathrm{PD}}=\overrightarrow{0}$$ 역시 삼각형의 가중 무게 중심의 위치를 찾는 것과 같은 방법을 사용하여 그 위치를 찾을 수 있습니다. 이 글에서는 사각형의 가중 무게 중심의 위치를 찾는 방법과 그 증명에 대해서 이야기 합니다.  (more…)

벡터의 내적 문제에 맞서는 최강의 공식 – 벡터와 중선

삼각형의 중선을 이용하면 복잡한 벡터의 내적 문제를 쉽게 풀 수 있습니다. 삼각형 OAB에서 선분 \(\mathrm{AB}\)의 중점을 \(\mathrm{M}\) 이라 하면 다음과 같은 사실이 성립합니다.

$$\mathrm{\overrightarrow{OA}\cdot\overrightarrow{OB}=OM^2-MB^2}\tag{*}\label{eq*}$$

이 공식은 벡터의 내적 문제, 특히 최대/최소 문제를 해결하기 위한 최강의 공식 중 하나입니다. 이 글에서는 이 공식의 증명과 그 의미를 설명하고, 이 공식과 관계있는 기출 문제를 풀어봅니다.

(more…)

가중 무게 중심을 이용한 교점의 위치 벡터 문제 해법

가중 무게 중심을 이용하면 점의 위치 벡터 문제를 아주 쉽게 풀 수 있을 때가 있습니다. 또한 메넬라우스의 정리나 체바의 정리를 사용해야 하는 풀이를 가중 무게 중심으로 대신 할 수도 있습니다. 이 글에서는 가중 문제 중심을 이용하여 위치 벡터 문제를 어떻게 풀 수 있는지 문제를 통해 살펴보겠습니다. (more…)

가중 무게 중심 위치와 넓이비 (비법공식)

$$a\overrightarrow{PA}+b\overrightarrow{PB}+c\overrightarrow{PC}=\overrightarrow{0}$$ 가 성립할 때 점 \(P\)를 \(\triangle{ABC}\)의 가중 무게 중심이라고 합니다.  또한  $$\triangle PBC:\triangle PCA:\triangle PAB=a:b:c$$가 됩니다. 이 글에서는 선분과 삼각형의 가중 무게 중심의 위치를 찾는 법과 가중 무게 중심의 위치 벡터, 삼각형의 넓이비에 대해서 알아보겠습니다.

(more…)