이차곡선 문제를 풀 때 사용할 수 있는 핵심 전략은 다음과 같습니다.
● 타원의 정의를 이용할 수 있는 보조선 그리기
● 동일한 구조의 식에서 방정식 추론하기 (주어진 식을 보고 사용할 식을 결정)
● 근과 계수의 관계
● 중점 연결 정리(타원, 쌍곡선)
이 글에서는 다음 문제의 풀이를 통해서 이러한 핵심 전략을 문제에서 어떻게 사용할 수 있는지 알아보겠습니다.
2013학년도 6월 모의고사 가형 27번
두점 \(\mathrm F(5,0)\), \(\mathrm F'(-5,0)\)을 초점으로 하는 타원 위의 서로 다른 두 점 \(\mathrm P\), \(\mathrm Q\)에 대하여 원점 \(\mathrm O\)에서 선분 \(\mathrm{PF}\)와 선분 \(\mathrm{QF’}\)에 내린 수선의 발을 각각 \(\mathrm H\)와 \(\mathrm I\)라 하자. 점 \(\mathrm H\)와 \(\mathrm I\)가 각각 선분 \(\mathrm{PF}\)와 선분 \(\mathrm{QF’}\)의 중점이고, \(\mathrm{\overline{OH}\times\overline{OI}=10}\)일 때, 이 타원의 장축의 길이를 \(l\)이라 하자. \(l^2\)의 값을 구하시오. (단, \(\mathrm{\overline{OH}\neq\overline{OI}}\))
(more…)