사차함수의 이중접선과 변곡점의 관계

이중접선을 갖는 사차함수의 그래프는 어떤 특징을 갖고 있을까요? 놀랍게도 변곡점을 갖는 모든 사차함수는 이중접선을 갖고 있습니다. 반대로 이중접선을 갖는 사차함수는 변곡점을 갖고 있습니다. 즉, 사차함수 \(f(x)=ax^4+bx^3+cx^2+dx+e\) \((a\ne 0)\)의 그래프가 이중접선을 가질 조건은 함수 \(f(x)\)의 그래프가 변곡점을 가질 조건과 같습니다. 즉, 

$$\begin{align}&\text{변곡점을 갖는 사차함수}\\
&\Leftrightarrow\text{이중접선을 갖는 사차함수}\end{align}$$

이고, \(f(x)\)의 그래프가 이중접선을 갖기 위한 조건은

$$3b^2-8ac>0$$

입니다. 그리고 이 때, 이중접선의 방정식은

$$y=\left(\frac{b(b^2-4ac)}{8a^2}+d\right)x-\frac{(b^2-4ac)^2}{64a^3}+e$$

입니다. 이 글에서는 이 조건을 증명하고, 이중접선의 방정식을 유도합니다.

(more…)

소소하지만 확실한 테크닉 – 사차다항식의 제곱완성

이차다항식의 제곱완성이란 이차다항식 \(ax^2+bx+c\)를 다음과 같이  $$ax^2+bx+c=a(x-p)^2+q$$ 완전제곱식 \((x-p)^2\)을 사용하여 식의 모양을 바꾸어주는 것을 말합니다. 바꾸어 주는 것을 을 제곱완성이라고 합니다. 마찬가지로, \(a>0\)인 사차식 \(ax^4+bx^3+cx^2+dx+dx+e\)를 다음과 같이 이차식의 완전제곱식 \((\sqrt{a}x^2+px+q)^2\)을 이용하여 식의 모양을 바꾸는 것을 사차다항식의 제곱완성이라고 합니다.

$$\begin{align}
&ax^4+bx^3+cx^2+dx+e\\
&=(\sqrt{a}x^2+px+q)^2+mx+n\end{align}$$

이 글에서는 사차다항식의 제곱완성과 그 응용에 대해서 다루어 보겠습니다.

(more…)

정답을 부르는 개념 – 사차함수와 이중 접선

사차함수의 이중 접선이란 사차함수의 그래프와 서로 다른 두 점에서 동시에 접하는 접선입니다. 이중 접선의 방정식을 구하거나 성질을 이용하는 것은 시험에서 자주 출제되는 아주 중요한 주제중 하나입니다.

이중 접선의 방정식은 여러 방법으로 찾을 수 있습니다. 그중 가장 중요한 것은 두 다항식의 그래프가 접할 때의 성질을 이용한 방법입니다. 이 방법을 사용하면 미분없이 사차함수의 이중 접선을 찾을 수 있습니다.

(more…)