삼각치환의 비밀

\(t=\tan x\)로 치환하면,

$$\int\frac{1}{1+x^2}dx \to \int dt$$

가 되어 적분하려는 함수가 상수 1이 되어 적분이 아주 간단해 집니다. 이렇게 삼각치환을 하면 적분하려는 함수가 간단해 지는 이유는 무엇일까요? 왜 꼭 굳이 \(t=\tan x\) 로 치환하는 이유는 무엇일까요?

이 글에서는 삼각치환의 비밀과 그 뒤에 있는 수학적 배경에 대해 이야기 합니다. (more…)

역삼각함수 arcsin(x), arccos(x), arctan(x)의 적분

\(\sin x,\ \cos x,\ \tan x\) 의 역함수(역삼각함수)를 각각 $$\begin{align}\arcsin x&=\sin^{-1}x\\
\arccos x&=\cos^{-1}x,\\
\arctan x&=\tan^{-1}x\end{align}$$라고 정의할 때,

$$\begin{align}\int \sin^{-1}xdx&= x\sin^{-1}x+\sqrt{1-x^2}+C\\
\int \cos^{-1}xdx&=x\cos^{-1}x-\sqrt{1-x^2}+C\\
\int \tan^{-1}xdx&=x\tan^{-1}x-\frac{1}{2}\ln(x^2+1)+C
\end{align}$$

입니다. 이 글에서는 역함수 치환적분의 원리를 설명하고, 이를 이용해서 역삼각함수의 적분을 증명해 보겠습니다.

(more…)

테이블 적분법의 원리 및 부분적분법의 귀납적 관계

이 글에서는 테이블 적분법의 원리를 설명합니다. 테이블 적분의 원리는 부분적분의 귀납적 관계를 이용한 것입니다.

\(f(x)\)를 n번 미분한 함수를 $$ f^{(n)}(x) : f^{(0)}(x),\ f^{(1)}(x),\ f^{(2)}(x),\ f^{(3)}(x),…,\ f^{(n)}(x),…$$ \(g(x)\)를 n번 부정적분(적분상수=0)한 함수를 $$g^{(-n)}(x) : g^{(0)}(x),\ g^{(-1)}(x),\ g^{(-2)}(x),\ g^{(-3)}(x),…,\ g^{(-n)}(x),…$$라 하면, $$\begin{align}\int f(x)g(x)dx&=f(x)g^{(-1)}(x)-\int f^{(1)}(x)g^{(-1)}(x)dx\\
&=f(x)g^{(-1)}(x)-\left(f^{(1)}(x)g^{(-2)}(x)-\int f^{(2)}(x)g^{(-2)}(x)dx\right)\\
&=f(x)g^{(-1)}(x)-f^{(1)}(x)g^{(-2)}(x)+\int f^{(2)}(x)g^{(-2)}(x)dx\\
&=…\end{align}$$ 입니다. 혹시 이 등식의 패턴이 보이시나요? (more…)

부분적분을 빠르게 – 삼각함수×지수함수의 테이블 적분법

이 글에서는 삼각함수×지수함수의 테이블 적분법에 대해 설명합니다. 예를 들어, $$\int \sin x\cdot e^x dx$$의 테이블 적분은 다음과 같습니다. $$\begin{array}{ccc} D && I\\
\hline
\sin x&{}&e^x\\
{}&\searrow{+}&{}\\
\cos x&{}&e^x\\
{}&\searrow{-}&{}\\
-\sin x&\bbox[yellow]{\rightarrow{+}}&e^x\\
\end{array}$$$$\int \sin x\cdot e^xdx=+(\sin x\cdot e^x)-(\cos x\cdot e^x)+\bbox[yellow]{\int(-\sin x)\cdot e^x dx}$$

(more…)

부분적분을 빠르게 – 다항함수×지수함수 또는 다항함수×삼각함수의 테이블 적분법

도표적분법 또는 표적분법이라고도 알려져 있는 테이블 적분법(tabular integration by parts)은 부분적분법을 빠르게 계산할 수 있는 방법입니다.  예를 들어 \(x^2\cdot e^x\) 의 부정적분 $$\int x^2\cdot e^x dx$$는 다음과 같은 표를 만들어 빠르게 계산할 수 있습니다.

$$\begin{array}{ccc} D && I\\
\hline
x^2&{}&e^x\\
{}&\searrow{+}&{}\\
2x&{}&e^x\\
{}&\searrow{-}&{}\\
2&{}&e^x\\
{}&\searrow{+}{}\\
0&{}&e^x\end{array}$$

$$\int x^2e^xdx=+(x^2\cdot e^x)-(2x\cdot e^x)+(2\cdot e^x) +C$$ 테이블 적분법은 크게 2가지로 나눌 수 있는데 이 글에서는 첫번째로 다항함수×지수함수나 다항함수×삼각함수 모양을 가진 함수의 테이블 적분법을 예를 들어 설명합니다.

(more…)

소소하지만 확실한 테크닉 – 양변적분과 e^(x)sin(x), e^(x)cos(x) 의 부정적분

미적분 문제에서 등식의 양변을 미분하면 새로운 조건을 찾을 수 있을 때가 많습니다. 하지만 등식의 양변을 같이 적분하는 것도 새로운 조건을 찾을 수 있는 방법입니다. 양변을 미분하는 것보다 많이 쓰이지는 않지만 종종 이러한 테크닉을 사용하는 문제들이 있습니다.

$$f(x)=g(x)\implies\int f(x)dx=\int g(x)dx$$

이 글에서는 이 테크닉의 원리를 설명하고 이 테크닉을 활용해 \(e^x\sin{x}\) 와 \(e^x\cos{x}\) 의 부정적분을 간단히 구하는 법을 설명하겠습니다.
$$\begin{align}
\int{e^x\sin{x}}dx&=\frac{1}{2}\left(e^x\sin{x}-e^x\cos{x}\right)+C\\
\int{e^x\cos{x}}dx&=\frac{1}{2}\left(e^x\sin{x}+e^x\cos{x}\right)+C\end{align}$$ (more…)

사차 함수와 이중접선으로 둘러싸인 부분의 넓이의 고속적분 – 1/30 공식

4차 함수 \(y=ax^4+bx^3+cx^2+dx+e\) 의 그래프가 직선 \(y=mx+n\)의 그래프와 x좌표가 각각 α, β (단, β > α) 인 두 점에서 이중으로 접할 때 4차 함수의 그래프와 이중 접선으로 둘러싸인 부분의 넓이는 $$\begin{align}&\int_{\alpha}^{\beta}|ax^4+bx^3+cx^2+dx+e-(mx+n)|dx\\
&=\int_{\alpha}^{\beta}|a(x-\alpha)^2(x-\beta)^2|dx\\
&=\frac{|a|}{30}(\beta-\alpha)^5\end{align}$$

이 글에서는 이 식의 증명을 소개합니다. (more…)