가끔은 아주 어려워 보이는 문제가 단순한 테크닉의 조합만으로 쉽게 풀리는 경우가 있습니다. 2018학년도 수능 나형 30번이 그러한 경우입니다. 이 문제를 풀기 위해서 필요한 것은 [소소하지만 확실한 테크닉] 2개와 (조금 길긴 하지만) 단순한 계산 뿐입니다.
2018학년도 수능 나형 30번
이차함수 \(f(x)=\dfrac{3x-x^2}{2}\) 에 대하여 구간 \([0,\infty)\) 에서 정의된 함수 \(g(x)\) 가 다음 조건을 만족시킨다.(가) \(0\leq x\lt 1\) 일 때, \(g(x)=f(x)\) 이다.
(나) \(n\leq x \lt n+1\) 일 때, $$g(x)=\frac{1}{2^n}\{f(x-n)-(x-n)\}+x$$이다. (단, \(n\)은 자연수이다.)
어떤 자연수 \(k(k\geq 6)\)에 대하여 함수 \(h(x)\)는 $$h(x)=
\begin{cases}
g(x) & \text{($0\leq x \lt 5$ 또는 $x\geq k$)}\\
2x-g(x) & \text{($5\leq x \lt k$)}
\end{cases}$$이다. 수열 \(\{a_n\}\)을 \(a_n=\displaystyle\int_0^nh(x)dx\) 라 할 때, $$\lim\limits_{n\to\infty}(2a_n-n^2)=\frac{241}{768}$$이다. \(k\)의 값을 구하시오.